2308.12276v4 [cs.CY] 20 Sep 2024

arxXiv

GAIDE: A Framework for Using Generative Al to Assist in Course
Content Development

Ethan Dickey”
Purdue University
West Lafayette, Indiana, USA
dickeye@purdue.edu

ABSTRACT

Contribution: This research-to-practice full paper presents “GAIDE:
Generative Al for Instructional Development and Education,” in-
troducing a pragmatic and systematic framework for employing
Generative Al (GenAl) in the development of educational content.
Unlike existing frameworks, GAIDE emphasizes practical applicabil-
ity for educators, facilitating the creation of diverse, engaging, and
academically sound materials. The novel aspect of our approach lies
in its detailed methodology for integrating GenAlI into curriculum
design processes, thereby reducing instructors’ workload and im-
proving the quality of educational materials. Through GAIDE, we
contribute a distinct, adaptable model for leveraging technological
advancements in education, providing a foundational step towards
more efficient and effective instructional material development.

Background: The motivation for our study emerges from the in-
creasing demand for innovative and engaging educational content,
coupled with the notable rise in Generative Al (GenAl) utilization
among students for academic tasks. Our investigations reveal that
nearly half of students engage with GenAl tools for completing
homework assignments, highlighting a significant shift in study
behaviors and the potential for technology to shape educational
practices. This scenario presents a dual challenge for educators: to
adapt to and incorporate these emerging technologies into their
teaching methodologies, not merely to keep pace with technologi-
cal advancements but to leverage them in fostering a more dynamic
and inclusive learning environment. This research addresses these
challenges by offering a concrete, adaptable solution, aiming to
reshape the landscape of educational content creation and its appli-
cation across diverse learning settings.

Intended Outcomes: The primary objectives of introducing GAIDE
are to: 1) Streamline the course content development process for
educators, 2) Foster the creation of dynamic, engaging, and var-
ied educational materials, and 3) Demonstrate the practical utility
of GenAl in enhancing instructional design, potentially setting a
precedent for its adoption in diverse educational contexts.

Application Design: GAIDE was conceived out of a necessity to
efficiently harness GenAl’s potential in education. The application
design is rooted in constructivist learning theory and TPCK, em-
phasizing the importance of integrating technology in a manner
that complements pedagogical goals and content knowledge. Our
Outcomes-Based Course Design approach aids educators in crafting
effective GenAl prompts and guides them through interactions with
GenAl tools, both of which are critical for generating high-quality,
contextually appropriate content.

Findings: Preliminary evaluation of GAIDE indicates its effec-
tiveness in mitigating the instructional challenges associated with

“Both authors contributed equally to this research.

Andres Bejarano®
Purdue University
West Lafayette, Indiana, USA
abejara@purdue.edu

content creation. Educators reported a significant reduction in the
time and effort required to develop course materials, without com-
promising on the breadth or depth of the content. Moreover, the use
of GenAI has shown promise in deterring conventional cheating
methods, suggesting a positive impact on academic integrity and
student engagement.

KEYWORDS

Generative Al (GenAl), course content development, content gen-
eration framework, instructional workload reduction, instructional
design, course design, faculty development

CONTENTS
Abstract 1
Contents 1
1 Introduction 1
2 Why Should Educators Consider GenAlI for Course
Content Creation? 2
3 GAIDE: A GenAlI Content Generation Framework 3
3.1 Setup 4
3.2 Course Content Rough Draft 4
33 Macro Refinement 4
3.4 Micro Refinement 6
3.5 Maintaining Contextual Integrity in Iterative
Refinement 6
3.6 Consolidating Generated Content 7
4 General Considerations for Engaging with GenAI 7
4.1 Diversity of Perspectives 7
5 Discussion and Future Work 7
Acknowledgments 8
References 8

1 INTRODUCTION

In an era where academic integrity is challenged by the widespread

availability of unauthorized solutions online, it has become increas-
ingly important for instructors to generate novel and diverse con-
tent each semester. However, in the past year, even freshly created

content has come under threat from Generative Al (GenAl) models,

which purport advanced language comprehension and question-
answering capabilities. While opinions on the actual problem-solving
capacities of these models vary, as evidenced by both positive

[23, 26, 34] and negative [18] reports, there is a consensus among

instructors globally about GenAI’s potential to significantly dis-
rupt academia, especially in the realm of Computer Science (CS)

(2,11, 20, 22].

https://orcid.org/0009-0007-3706-5253
https://orcid.org/0000-0003-2611-2855

A recent preliminary anonymous survey of our summer students
enrolled in a data structures and algorithms course revealed that
at least 48.5% utilized GenAlI for homework assistance [9]. This
figure might even be an underestimation, considering potential
hesitations in self-reporting. Recent literature and news articles
suggest that the actual number of students using GenAlI and the
variety of their methods might be more extensive than previously
assumed by educators [30, 36]. Anecdotally, many students appear
comfortable sharing insights about their peers’ frequent use of
GenAl Their detailed knowledge of these tools suggests familiarity,
although direct admissions of personal use remain rare. All of these
factors underscore the growing influence of GenAl in the academic
realm but also hint at its potential applications for educators. As the
academic community grapples with the ever-growing demand for
fresh, diverse, and high-quality course content, the traditional meth-
ods of content creation often fall short, being both time-consuming
and occasionally monotonous.

While the challenges posed by GenAlI to academic integrity are
evident, it is crucial to recognize the transformative potential these
tools offer. The same capabilities that enable students to seek unau-
thorized assistance can, if channeled correctly, revolutionize the
way educators create and deliver content. Content Creators (CCs),
in particular, find themselves uniquely positioned in this landscape:
they stand to benefit directly from GenAI’s advantages in content
generation, such as creating diverse, high-quality, and relevant con-
tent, yet they also confront the challenges it presents to academic
integrity. This dual impact places CCs at a critical juncture. With-
out a structured approach, they risk either not fully harnessing
the benefits of GenAlI or inadvertently amplifying its challenges
[20, 35, 37]. Therefore, a systematic method is essential to guide
CCs in navigating the complexities of GenAl, ensuring they can
effectively leverage its benefits while being aware of its potential
pitfalls. This burgeoning potential brings forth a pivotal question:
how can educators harness the power of GenAlI to create
meaningful course content efficiently? It’s worth noting that
the challenge of unauthorized student assistance with GenAlI is
a significant concern and is addressed in detail in our separate
parallel work [9].

In light of the growing utility and student interest in GenAI
tools, this paper aims to develop a generalized approach for CCs
in academia to harness the potential of these tools. Specifically, we
study natural language GenAl models which incorporate memory
of conversation (the authors tested the framework using ChatGPT
3.5 and 4.01, Bard?, Llamma3, and Microsoft Bing’s Copilot4 and
found ChatGPT 4.0 to produce the best overall results with our
framework as of November 2023). We begin by substantiating our
observations on GenAl’s utility and student interest, providing both
rationale and illustrative examples. After motivating why instruc-
tors should be interested in mastering these tools, we introduce
the GenAI Content Generation Framework. Remarkably, up until the
submission date of this paper, we have encountered no preexisting
framework specifically aiding educators in incorporating GenAl
tools within the content creation process. Most existing literature

!https://chat.openai.com/
https://bard.google.com/
3https://ai.meta.com/llama
“4https://www.bing.com/

often adopts a broader academic perspective, emphasizing empow-
ering students to critically assess these tools and fostering ethical
conversations [3, 14, 15, 28]. In contrast, our approach stands out
by specifying a particular workflow and offering practical recom-
mendations tailored for CCs. Furthermore, we provide an explicit
rationale for its adoption, ensuring that CCs not only understand
the "how’ but also the ‘why’ behind each step. This framework,
characterized by a flow of steps and guiding perspectives, assists
CCs in harnessing GenAl efficiently to systematically and practi-
cally get high-quality results. While each interaction with GenAl
models is unique due to its dynamism and creativity (and pseudo-
random hallucinations), our framework serves as a consistent guide,
offering practical strategies to achieve precise content outcomes.
Subsequent sections delve into broader considerations for engag-
ing with GenAlI and conclude with reflections on the framework’s
implications and potential future research directions.

2 WHY SHOULD EDUCATORS CONSIDER
GENAI FOR COURSE CONTENT CREATION?

GenAl excels at assisting experts in executing simple tasks more
efficiently and, in many cases, with enhanced outcomes, as detailed
in subsequent subsections. While experts can harness the power
of GenAl effectively, non-experts (such as students) face distinct
challenges [21]. They may struggle to verify, correct, and selectively
use results, leading to potential pitfalls such as the reinforcement of
incorrect knowledge. Other significant risks for non-experts include
a lack of genuine skill development, diminished problem-solving
capabilities, and an over-reliance on the tool, which can hinder
self-sufficiency.

The advent of Large Language Models (LLMs), such as OpenAl
Codex, marked a turning point in CS education, a trend that gained
considerable momentum with the GenAI explosion of 2022 and 2023.
Pioneering studies, like those by Sarsa et al. [25], explored using
these models to craft programming exercises, solutions, and test
cases. These early experiments demonstrated the potential for LLMs
to generate innovative and relevant educational content, albeit
requiring meticulous instructor oversight and adjustments. This
initial exploration laid the groundwork for today’s educators, who,
with advanced LLM capabilities and more refined techniques in
prompt engineering, can now much more efficiently and effectively
create and tailor course materials. This evolution reflects a growing
sophistication in the application of GenAl tools in education, setting
the stage for their broader utilization, as detailed in the subsequent
sections.

Recent studies and observations have underscored the multifac-
eted capabilities of GenAlI [2, 4, 20, 27, 31, 35]. These models excel
in generating large volumes of content swiftly, drafting documents,
automating repetitive interactions, providing interactive explana-
tions, generating and evaluating code, and producing (arguably)
creative content. For course CCs, these capabilities translate into
tangible benefits. They can produce content more rapidly, brain-
storm and ideate with the assistance of the model, and refine content
iteratively based on conversational or formal feedback. The direct
advantages of harnessing these properties include faster course
development, increased content flexibility (styles, levels, etc.), the
ability to update content frequently, scalability of personalized

https://chat.openai.com/
https://bard.google.com/
https://ai.meta.com/llama
https://www.bing.com/

content, cost-effective content creation, support for experimental
approaches, and automation of repetitive tasks.

While many of these benefits provide intrinsic motivation for
course CCs to explore these tools, we also present a student-centered
perspective. We posit that (a) students are highly likely to exper-
iment with these tools, and (b) these tools are here to stay. To
truly understand the implications of these tools within academia,
instructors would benefit from firsthand experience with them.

To substantiate point (a), we highlight several observations. First,
the detection of GenAlI tool usage for academic dishonesty has
proven challenging, given its capacity to produce seemingly origi-
nal content (including craftily rephrasing and editing) [7, 33]. This
makes it arguably more elusive than traditional forms of academic
dishonesty. Second, conventional deterrents against academic dis-
honesty face challenges in the context of GenAl due to its novelty
and accessibility. Unlike instances where students source content
from the internet, GenAl-generated content is unique, making de-
tection and prevention more complex. Lastly, there’s a growing
consensus that these tools will be permissible and even prevalent
in future workplaces, a sentiment echoed by CS instructors glob-
ally [20]. We can see these conversations happening even now,
from legal perspectives [1, 13] to strong corporate stances on both
sides of the line [8, 29]. Given this trajectory, students often pose
a challenging question: “Why shouldn’t I use GenAI?” We delve
deeper into this dilemma in a separate study, where we introduce a
method to address this very concern [9]. In this paper, we contend
that the rapid adoption of GenAl by students and industries un-
derscores the urgency for educators and course CCs to fully grasp
its academic ramifications. This ensures they remain at the cutting
edge of this dynamic academic environment. Presently, the most
effective method to achieve this comprehension is through direct
engagement and application of these tools.

To support (b), we share a quote from a recent investigation into
GenAl by McKinsey [5], one of the oldest and largest of the world’s
most prestigious management strategy consulting firms, which we
believe aptly summarizes current views on the future of GenAl: “All
of us are at the beginning of a journey to understand [GenAI’s] power,
reach, and capabilities... [This research] suggests that [GenAl] is poised
to transform roles and boost performance across functions such as
sales and marketing, customer operations, and software development.
In the process, it could unlock trillions of dollars in value across sectors
from banking to life sciences.”

In light of the above discussions and the insights from McKinsey,
it becomes evident that GenAl is not just a fleeting technological
trend but a transformative force poised to reshape various sectors,
including academia. As educators and stakeholders in the academic
community, it is incumbent upon us to not only recognize the chal-
lenges posed by GenAlI but also to proactively engage with it. By
doing so, we can harness its potential for positive educational out-
comes while mitigating risks. This proactive approach will ensure
that academia remains adaptive, relevant, and prepared for the
evolving landscape that GenAl presents. As we navigate this new
frontier, collaboration, continuous research, and open dialogue will
be paramount in guiding our path forward.

3 GAIDE: A GENAI CONTENT GENERATION
FRAMEWORK

Properly motivated, we dive into the foundational principles and
structure of our GenAI Content Generation Framework. This frame-
work is most succinctly described as a sequence of steps, each ac-
companied by its respective perspective, guiding the integration
of GenAl in collegiate-level course content development. While
our approach mirrors traditional content development processes,
we have specifically aligned it with the Outcomes-Based Course
Design methodology [17]. This choice is influenced by Ziegenfuss’s
summary of observed approaches to course design [39] and the
widely recognized Backward Course Design Model [16].

Building further on foundational methodologies, the GAIDE
framework is deeply embedded within constructivist learning the-
ory [12], which posits that learners construct knowledge through
active engagement with their environment. This aligns with our
aim to employ GenAl to create dynamic and interactive learning
experiences that are custom-tailored to meet the diverse needs of
students. Moreover, we integrate the principles of Technological
Pedagogical Content Knowledge (TPCK) [19], ensuring that tech-
nology through GenAlI supports and actively enhances pedagogical
practices and content delivery. This strategic alignment guarantees
that GAIDE supports educational objectives while also advancing
the practical application of these theories in real-world educational
settings.

By rooting the GAIDE framework in these diverse theories, we
provide a structured approach to content generation and enrich
the ongoing discourse on integrating technology in education. This
theoretical grounding ensures that our framework not only stream-
lines educational processes but actively enhances them, creating an
environment where educators and students alike can thrive. The
application of constructivist and TPCK principles underscores a
proactive approach to improving educational practices, ensuring
that technology serves as a bridge rather than a barrier to effective
learning "

After designing course outcomes, the framework moves to course
content draft generation. This is followed by iterative refinement,
initially on a macro-scale and subsequently on a micro-scale. Rec-
ognizing the diverse nature of course content and the versatile
capabilities of GenAl, we've categorized our approach into two
primary content types: Lecture-Style and Problem Creation. While
our framework doesn’t adhere strictly to a specific design model, it
offers flexibility and adaptability to various educational contexts.
We wrap up this section with additional recommendations for har-
nessing GenAl, which, while valuable, didn’t seamlessly fit within
the main structure of the framework. Figure 1 contains a visual
illustration of the following process, and the Supplementary Mate-
rials (available below main text body) contain a simple example of
the framework using ChatGPT 4.0 and Microsoft Bing’s Copilot.

It is important to note that our framework primarily targets the
creation of course content for undergraduate collegiate CS courses.
Nevertheless, the versatility of this framework allows for its adapta-
tion to a variety of educational contexts. As course material delves
deeper and becomes more advanced, there’s an increased likelihood

of GenAlI models producing inaccurate or misleading content. De-
spite these potential pitfalls, GenAI models remain invaluable tools
for content design and ideation, even in advanced courses.

3.1 Setup

3.1.1 Set Goals. The first and only offline (without GenAlI) step
in our framework is the establishment of clear goals. These goals
not only guide the narrative presented to the GenAl model but
also serve as a constant reminder of the intended direction. For
instance, when we were designing new homework and tests for a
summer class, one of our primary goals was: “to provide meaning-
ful, engaging, and fresh content for students in CS251” While these
goals can be as broad or specific as desired, it is imperative that
they contain specific, measurable outcomes. To clarify, a measur-
able outcome might be something like “students should be able to
implement a basic sorting algorithm” rather than a vague goal like
“students should understand sorting.” In the process of setting and
working towards these goals, it’s also worth noting the importance
of self-reflection. Challenging one’s own assumptions about what
these models can achieve can be beneficial, as it fosters adaptability
and encourages a proactive approach to potential limitations and
innovations of GenAl By regularly reassessing and adjusting one’s
expectations, educators can better harness the evolving capabili-
ties of these models. For our team, the challenge lay in the “fresh
content” aspect. Given the numerous semesters of content we had
accumulated, devising non-repetitive material had proven to be a
significant hurdle. Contrary to our initial assumptions, we found
that these tools were particularly adept at generating fresh content,
often surpassing our own initial expectations.

3.1.2 Set Up the Context. Transitioning to the online component
of our framework, the first essential step with any GenAlI session
is to set up the context. Broadly, this involves providing the model
with details akin to what a new DTA® would require to design the
course content. Specifically, to get quality results, one should tell
the model how to act (known as the ‘persona prompt pattern’ [35]),
the topic under consideration, any prior knowledge the students
possess, and any pertinent student demographics (usually just their
academic year). For example, high schoolers in a collegiate summer
program possess a different skill set and background compared to
sophomore CS majors. Providing the model with such demographic
details enables it to tailor content with greater precision (additional
benefits surrounding demographics and perspectives are discussed
in 4.1). Our approach to context setup aligns with the ‘context
manager prompt pattern’ introduced by White et al. [35]. However,
our framework offers specific recommendations on context details
and their placement within the GenAlI session.

3.1.3 Generate Learning Objectives. Concluding the setup stage,
the generation of learning objectives (LOs) is paramount. The cen-
trality of LOs in guiding subsequent interactions with GenAI cannot
be overstated. This emphasis on LOs is rooted in our adoption of
the Outcomes-Based Course Design methodology [17, 39], which
prioritizes determining student outcomes from the outset. For a

SWe refer to TAs who develop content for courses as one of development TAs, dev
TAs, or DTAs.

deeper exploration of LOs as foundational to effective teaching,
refer to [10].

When instructing GenAl to generate LOs, it’s essential to make
specific, measurable requests. Additionally, directing the model to
employ professional language, such as terms from Bloom’s revised
taxonomy [6], is crucial. This not only implies a quality standard for
the LOs based on other LOs which use the same language but also
communicates the desired specificity and formality to the model.
Below are sample prompts to guide GenAl: “Act as an instructor of
Computer Science in a university. The current topic we are covering is
Binary Search Trees. Students know discrete math, basic programming,
pointers, primitive data structures, and runtime algorithm analysis.
Students are in their second year of studies. Give me five LOs for the
current topic. Use Bloom’s revised taxonomy verbs for the objectives.”

As we delve into design sessions with GenAl, it is important
to grasp how best to interact with the model. The generation of
content, including LOs, is iterative, with initial outputs often not
aligning perfectly with the specific course goals. This is a key reason
for requesting a larger number of LOs than might be immediately
needed. From this broader set, educators can select a subset that
resonates more closely with their goals and the targeted student
profile. If the initial LOs don’t fully meet expectations, it is beneficial
to work with this chosen subset, providing the model with targeted
feedback for refinement. For instance, if an objective needs reword-
ing to better fit within Bloom’s revised taxonomy or to emphasize
application over theory, such iterative feedback can steer the model
accordingly. An illustrative interaction might be: “I like learning
objectives 2, 3, and 7, but I want you to reword 2 to be higher in
the Cognitive Process dimension of Bloom’s revised taxonomy and
adjust 3 to prioritize application over theoretical understanding.”
Lastly, if you edit something the model gave you, it is imperative
to let it know what you did, even if you do not want its feedback.
This allows it to learn your preferences over a session.

3.2 Course Content Rough Draft

Once refined LOs are established, the focus shifts to the specific
course content. While course content can take various forms, for
the purposes of this framework, it is categorized into two primary
types: Lecture-Style and Problem Creation. A rough draft of the
former refers to an outline that should be correct only from a very
high-level view, while a rough draft of the latter refers to lists of
potential problems, from which only a select subset will be chosen
for iterative refinement. Following the creation of these rough drafts,
we move to iterative refinement from a macro perspective.

3.3 Macro Refinement

It is critical to understand the distinction we make between macro
and micro refinement. Macro refinement focuses on adjusting the
content draft holistically, refining entire sections to ensure align-
ment with the established expectations, goals, LOs, and context.
Conversely, micro refinement zeroes in on specific parts of the draft,
addressing them with precision and individualized context. At the
macro stage, it is acceptable if certain components don’t fully meet
expectations, as long as they are broadly correct; finer adjustments
are reserved for the micro refinement phase.

GAIDE: Generative Al for Instructional Development and Education

-
Set goals Set up the .
. :: 2 objecti
(offline) context)
vy
“To provide How to act, previous

knowledge, context,
expected student skill
level (measured by
year in program)

P

meaningful, engaging,
and fresh content for
students in CS251”

:

Problem Creation

Start with an
outline

Iteratively

Start with a list
of potential

problems from —
crideia s Use technical
LU language

Specific, measurable
request for learning
objectives (using
Bloom’s taxonomy)

refine result
as a whole

Lecture-Style

Problem Creation

Dive into particular
course content
4

r

Start a new chat and tem
it where you were

(context, LOs, outline,

Y specific location, etc.)

Repetitively
wrong?

=

4
a N
Occasionally remind it
of your goals and the

<j context
- _4

“Rewrite them to be more engaging
and relevant for collegiate computer
science students at X University.”

Iteratively
refine small
pieces, one
atatime

“Act as an instructor of Computer
Science in a university. Please answer
these questions in a brief way.”

Figure 1: A illustrative overview of the GAIDE process. Please refer to Section 3 for further discussion of each component.
Please refer to the Supplementary Materials (available below main text body) for a simple example of the framework using

ChatGPT4.0 and Microsoft Bing’s Copilot

During macro refinement, interactions with the model should
mirror discussions with a dev TA%, employing technical terminol-
ogy and offering feedback on the draft’s strengths and weaknesses.

With this foundation, we present considerations for each cate-
gory and provide guidance on when to transition to micro refine-
ment.

3.3.1 Lecture-Type. In any content type which requires a larger
flow and organization, outlines are typically a good starting place.
Request an outline appropriate for your content and specify which
LOs you wish to use in it. From there, you should iteratively refine
the outline as a whole. Here are some things to consider:

e Duration: How long is the lecture?

o Associated Tasks: Are there any associated tasks outside
the lecture, such as grading in-class activities or preparing
materials?

e Pre- and Post-Lecture Activities: Are there any activities
before or after the lecture?

e Subtopics: Are there any subtopics that are crucial to cover?

o Specific Activities: Are there particular activities, such as
quizzes or group work, that are planned?

Each of these considerations, if relevant, should be communi-
cated to the model during the refinement process (e.g. “Rewrite the
outline to fit into 50 minutes”). Addressing all considerations simul-
taneously or tackling them individually are both valid approaches,

with both methods showing comparable success rates in our experi-
ence (e.g. “Try again, but make them all higher in Bloom’s Taxonomy”
versus ‘I like 2 and 3, but 1 and 4 don’t match with my goals, please
make 1 harder and 4 easier, to make this more appropriate for a timed
exam setting”).

Additionally, it can be helpful and incredibly insightful to let
GenAl brainstorm on different lecture components. Moreover, en-
couraging the model to deviate from routine approaches aligns with
the active learning principle of unpredictability [10]. For a deeper
dive into brainstorming and alternate perspectives, refer to 4.1.

Once the outline aligns with the lecture’s objectives and ap-
proach, it’s time to delve into specific sections, similar to the pro-
cess for problem sets. At this juncture, managing expectations is
crucial. The model might produce a near-perfect outline or offer
just a few valuable section ideas. Regardless, these outputs serve
as a foundation for the micro refinement phase, where the lecture
content can be further tailored for a complete draft or cherry-picked
for integration into an existing draft.

3.3.2 Problem Creation. For content types that result in lists, such
as problems or activities, the emphasis is on the diversity of re-
sponses and the general applicability of the items, hereafter referred
to generically as “problems.” Unlike Lecture-Type content, only a
subset of the generated list will be included in the final version.
During the micro refinement phase, the focus will be on a select

few top problems rather than an exhaustive review of every item
as is done for outlines.

To generate a draft, ask the model to generate a specific number
of problems, ideally more than required, based on the selected LOs.
If the generated problems do not align with the intended goals and
context, provide feedback to the model, emphasizing the desired
attributes. Key variables to consider include:

e Answer style: Multiple choice, short answer, etc.

e Depth: Desired level(s) within Bloom’s Revised Taxonomy
[6] or Webb’s Depth of Knowledge [32].

e Theme: Leveraging GenAl’s strength in creativity.

e Topical theme: Ensuring the problems address specific
skills within the topic.

The macro refinement process can vary based on the alignment
of the generated problems with the goals. For instance, if only a
few questions are relevant, instruct the model to generate problems
similar to the relevant ones. If the model’s responses become repet-
itive or misaligned, providing a sample problem can be particularly
helpful in resetting its misconceptions about what is desired. Sev-
eral other examples exist, but we leave it to the discretion of the
reader to respond to the model within the spirit of this framework.

The boundary between macro and micro refinement in Problem
Creation can be nebulous. A good indication of the transition to
micro refinement occurs when the focus shifts to refining a select
subset of problems, while disregarding the rest.

3.4 Micro Refinement

Before delving into micro refinement, educators should be satisfied
with the overall structure and general alignment of the content
draft with the intended goals and context. From there, the focus
shifts to perfecting and elaborating on each segment of the con-
tent. This involves examining each section, subsection, or question
individually, informing the model of the specific focus on that part.

During these small, focused refinements, it is crucial to maintain
context specificity. For instance, if refining a problem on frequency
analysis in Huffman Coding emphasizes the theoretical aspect over
the practical skill, this context should not inadvertently influence a
subsequent question on creating the Huffman Coding Tree, where
hands-on application is integral to understanding the theory. See
3.5 for further discussion on context integrity.

Alongside specifying the content segment for refinement, pro-
vide the model with clear modification instructions. The granularity
of these requests can vary widely. For instance, feedback can range
from broader directives like, “make this question more challenging;
it’s currently too straightforward for a homework assignment,” to
more specific directives such as, ‘I find the word ‘target’ unsuitable;
could you rephrase that sentence, please?” Such detailed interactions
ensure the content aligns closely with the educator’s vision and
objectives.

The micro refinement process is inherently flexible, adapting to
the educator’s vision for the final content. While there’s no singular
correct approach, we offer two potential workflows for each content

type.
34.1 Lecture-Type. Once satisfied with a particular segment of the

outline, educators can request the model to generate a detailed script
or essential talking points. These scripts serve as a roadmap for

the lecture, ensuring a coherent flow and comprehensive coverage
of the topic. As the script is generated, it’s crucial to assess its
alignment with the LOs and its potential to engage students. Any
misaligned or inaccurate sections should be refined iteratively. Once
sections are polished, the model can merge the script cohesively.
This refined script can be paired with lecture slides, multimedia, or
classroom activities to enrich the educational journey.

3.4.2 Problem Creation. In the refinement of individual problems,
several strategies emerged as particularly effective. Among these,
iterative rewording of the problem by the model, adjusting the
problem’s difficulty, and embedding problems within a narrative
stood out. Notably, while most narrative integrations are typically
part of micro refinement, exceptions arise when a global storyline
is employed, where each problem contributes to a larger narrative.

During problem refinement, educators can instruct the model to
answer the question from an undergraduate’s perspective (or some
other demographic(s)). This approach can reveal common pitfalls
and misconceptions, guiding further refinement. Such insights are
invaluable, especially for problems where students must compre-
hend and act without instructional support. Misunderstandings can
arise in activities without instructional support, often over aspects
not intended for assessment. Rewording the problem can clarify
these points, enhancing comprehension.

As the refinement progresses, educators should request the cor-
rect answer (usually requesting in a brief or concise way to avoid
the overly-wordy responses certain models are prone to). If accu-
rate, this stage is suitable for generating a rubric. While not always
standard practice, rubrics ensure a consistent and fair assessment.
For a deeper understanding of rubric benefits, Ragupathi and Lee
[24] provide valuable insights.

If the model’s answer is incorrect, educators can guide it to-
wards the right solution. Persistent errors can highlight tasks that
challenge the model, incredibly powerful information which offers
unique teaching opportunities about the limitations of GenAl (as
address in [9]). Regardless, perfection in answers isn’t the goal. The
quality of a rubric doesn’t hinge on the exact correctness of the
provided answer, but rather on sound evaluation criteria.

While the iterative refinement process may seem labor-intensive,
it’s essential to note that these steps are integral to traditional
content creation. GenAl often streamlines this process, reducing
the time and effort typically required.

3.5 Maintaining Contextual Integrity in
Iterative Refinement

In the process of iterative refinement, two critical concerns arise:
context blending and loss of focus. The term ‘context blending’ per-
tains to the merging of contexts between different steps that do
not inherently share the same context. On the other hand, Toss
of focus’ denotes the model’s diminishing capacity to execute the
tasks and refinements as directed. To mitigate context blending,
one should delineate clear transitions between sections and inter-
mittently reinforce context-specific labels, such as LOs, sections, or
parts under consideration. Furthermore, prompting the model to re-
iterate these context-specific labels as it transitions to a subsequent
section can enhance its adherence to the expected context. Most
crucially, if a loss of focus is observed, it may be beneficial to initiate

a complete context reset. This can be achieved by starting a new
session, reintroducing the context, and specifying the current stage
of the process—by providing, for instance, the working outline, LOs,
global context, and the specific section in focus.

3.6 Consolidating Generated Content

Given the intricacies of generating comprehensive course content,
there is a high likelihood that it will be necessary to initiate multiple
sessions with GenAlI Due to this segmented approach, the model
may not seamlessly provide an overarching summary of all content
components in a singular response. As a practical measure, CCs
are encouraged to maintain a dedicated document to collate and
refine the selected outputs, ensuring a cohesive and well-structured
course assembly.

3.6.1 GenAl in Comprehensive Course Planning. While the primary
focus of this framework is not on constructing an entire course
from the ground up using GenAl, the potential of these models
in the realm of course planning warrants attention. Once LOs,
course outlines, and assessments are established, GenAI models
demonstrate a commendable proficiency in devising comprehen-
sive course activity plans within a single session. This includes
detailed time allocations and other integral components of a struc-
tured plan. Leading chat-based GenAlI enterprises, such as OpenAl,
Anthropic, and Google, have underscored the prowess of these tools
in planning, brainstorming, and feedback solicitation. Notably, the
planning capability of GenAlI shines when tasked with orchestrat-
ing plans for cohesive sets of course content, rather than isolated
components.

4 GENERAL CONSIDERATIONS FOR
ENGAGING WITH GENAI

In this section, we offer various insights and recommendations
pertinent to interacting with GenAlI These considerations, while
valuable, do not align explicitly with any specific segment of the
framework.

(1) Perspective. A useful analogy for understanding a GenAI
model likens it to a child aged 6-8 years. Such children excel
at executing tasks when given clear instructions, provided
they possess the requisite knowledge. In the case of GenAlI,
instead of drawing from 6-8 years of human experiences, it
taps into the vast expanse of the internet. However, akin to
children of this age, GenAI models often lack initiative and
may not perform tasks without explicit direction. Absent
specific guidance, the assumptions made by the model could
diverge significantly from the intended objectives of the
session.

(2) Brainstorming. One of GenAT’s notable strengths lies in its
creative prowess. Rather than providing explicit specifica-
tions for assessments or activities, CCs might find it ben-
eficial to solicit recommendations from GenAl for various
course content elements. This approach can yield diverse
and innovative ideas, enriching the educational experience.

(3) Embracing Imperfection. While the pursuit of excellence is
commendable, it’s essential to recognize the inherent limita-
tions of GenAl. Continuously striving for perfection can lead

to diminishing returns. Instead, it’s often more productive to
acknowledge areas where the model may falter and focus on
harnessing its strengths. In essence, avoid getting mired in
endless refinements and capitalize on the valuable insights
it provides.

Optimizing Content Generation. When soliciting GenAl for
new content, always request a more extensive set than re-
quired. This approach allows for a selection process, ensur-
ing the final subset aligns closely with goals and context.
Additionally, by providing specific directives, such as “with
varying levels of difficulty” or “answer in a brief way,” one can
enhance the utility and precision of the generated output.

—
N
=

4.1 Diversity of Perspectives

In the realm of education, understanding and addressing the diverse
backgrounds and experiences of learners is paramount. One of the
unique capabilities of GenAl is its ability to simulate a multitude of
perspectives, which can be instrumental in illuminating potential
blind spots in course content, especially when creating content for
unfamiliar demographics.

A particularly effective strategy involves employing the phrase
“act as” when interacting with GenAl (known as the ‘persona prompt
pattern’ [35]). By instructing the model to “act as” a particular demo-
graphic or adopt a specific perspective, educators can gain insights
that might otherwise remain obscured. For instance, asking GenAl
to “act as a student from a non-technical background” or “act as an
international student” can yield content and feedback that is more
attuned to the needs and challenges of these specific groups.

Leveraging this feature not only enriches the educational mate-
rial but also fosters an inclusive learning environment. It ensures
that content is not inadvertently biased or neglectful of the diverse
experiences and backgrounds that students bring to the classroom.
In essence, by harnessing the diversity of perspectives that GenAI
can offer, educators can craft a more holistic and inclusive educa-
tional experience.

5 DISCUSSION AND FUTURE WORK

Given the relatively recent release and rise to prominence of easily
accessible GenAl tools, research studying their usage and applica-
tions is still very young. Zhai et al. [38] concluded that “[Machine
Learning] has transformed-but not yet redefined—conventional
science assessment practice in terms of fundamental purpose, the
nature of the science assessment, and the relevant assessment chal-
lenges.” While not addressing the purpose and nature of assessments
themselves, the presented framework takes one small step in push-
ing to redefine how traditional course development is done - and
seeks to change who is qualified to develop high-quality course
content.

Furthermore, this framework provides a novel perspective on
what could and should be done with these tools. Instead of asking,
“what should we do about these tools,” as many of our colleagues
and professors around the world appear to be focusing on [20], this
framework turns the question around on instructors and facilitates
discussion surrounding “how can these tools help us in all of our
activities?”

While our primary focus in this study was to elucidate the po-
tential of GenAl in assisting educators with content creation, the
second research question posed in our abstract remains an essen-
tial area of inquiry: Can the use of GenAlI significantly reduce the
workload of instructional staft? This question is of paramount im-
portance, especially in the context of increasing class sizes and
the constant demand for updated course materials. A specific and
measurable research question could be formulated as: “To what
extent can the integration of GenAl in course content development
reduce the time spent by instructional staff on content creation
and revision?” Future studies should employ both quantitative and
qualitative methods to assess the time savings, if any, and the poten-
tial shifts in the nature of the workload. For instance, while GenAl
might reduce the time spent on content creation, it might introduce
new tasks, such as refining GenAl outputs or tailoring generated
content to specific course objectives. Addressing this research ques-
tion will provide a more comprehensive understanding of the true
impact of GenAlI on the educational landscape.

In an effort to gauge the initial reception and applicability of our
framework, we introduced it to around 20 of our colleagues during
a series of workshops. Although these workshops were conducted
recently, and a comprehensive analysis of the survey results is
pending, preliminary feedback suggests a high degree of satisfaction
with the framework and an indication that the workshop objectives
were largely met. Additionally, having used this framework for
nearly a year, we have found it to be frequently beneficial and
versatile across a wide variety of course contexts and settings.

While we sought to be as general and extendable as possible, the
applicability and utility of this framework are inherently bound
to some degree to the selected GenAl model. It works best on a
chat-based, highly trained model that understands nuances and
perspectives across academia. Furthermore, the development of
this framework was performed in the context of CS undergraduate
courses. More work will be required to validate its utility in other
contexts and potentially adapt the model to one that is more useful
across disciplines. The GAIDE framework is designed to be highly
adaptable and applicable across disciplines by aligning with the
specific learning objectives and goals of each respective field. This
flexibility allows GAIDE to support educators in different contexts,
ensuring the framework remains relevant and practical regardless
of the subject matter or educational level.

To conclude, the authors would like to leave you with two
thoughts: First, as the frontiers of technology continue to expand,
the essence of education remains deeply rooted in the dynamic in-
terplay between innovation and tradition. In the digital age, where
generative Al reshapes learning landscapes, it beckons us to adapt
and reimagine the educational paradigms. With the GAIDE frame-
work, we endeavor to harness the formidable potential of generative
Al not as a replacement for the human touch in education but as a
complement that enriches it. Let us consider how these tools can be
molded to respect and uplift the timeless values of teaching while
also preparing learners to thrive in a world where change is the
only constant.

Second, in the relentless pursuit of progress, the realm of edu-
cation stands as both a beneficiary and a steward of technological
evolution. As we integrate these advanced tools, let us remember
that their true value lies not in their ability to replicate human

thought but in their capacity to expand the horizons of what educa-
tors can achieve. In this new educational landscape, our challenge
is to cultivate a synergy where technology amplifies creativity, en-
hances inclusivity, and deepens understanding, thereby preparing
a generation that is as wise as it is technologically adept.

ACKNOWLEDGMENTS

The authors would like to thank Purdue’s Center for Instructional
Excellence, at whose generative Al discussions we met and were
encouraged to pursue our ideas. Furthermore, a special thanks to
Emily Bonem and David Nelson for supporting and encouraging
us initially and repeatedly as we execute our project. Lastly, we
would like to thank Andre Beasley for a useful discussion on general
course development using ChatGPT.

REFERENCES

[1] Devin Bates. 2023. ChatGPT in the Workplace - A Legal Minefield! What You
Need to Know to Protect Your Business. JDSupra (May 2023). https://www.
jdsupra.com/legalnews/chatgpt-in-the-workplace-a-legal-3653749/
Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machinery,
New York, NY, USA, 500-506. https://doi.org/10.1145/3545945.3569759
Christopher Bull and Ahmed Kharrufa. 2023. Generative Al Assistants in Software
Development Education: A vision for integrating Generative Al into educational
practice, not instinctively defending against it. IEEE Software (2023), 1-9. https:
//doi.org/10.1109/MS.2023.3300574
Jillian M. Buriak, Deji Akinwande, Natalie Artzi, C. Jeffrey Brinker, Cynthia Bur-
rows, Warren C. W. Chan, Chunying Chen, Xiaodong Chen, Manish Chhowalla,
Lifeng Chi, William Chueh, Cathleen M. Crudden, Dino Di Carlo, Sharon C.
Glotzer, Mark C. Hersam, Dean Ho, Tony Y. Hu, Jiaxing Huang, Ali Javey,
Prashant V. Kamat, Il-Doo Kim, Nicholas A. Kotov, T. Randall Lee, Young Hee
Lee, Yan Li, Luis M. Liz-Marzéan, Paul Mulvaney, Prineha Narang, Peter Nordlan-
der, Rahmi Oklu, Wolfgang J. Parak, Andrey L. Rogach, Mathieu Salanne, Paolo
Samori, Raymond E. Schaak, Kirk S. Schanze, Tsuyoshi Sekitani, Sara Skrabalak,
Ajay K. Sood, Ilja K. Voets, Shu Wang, Shutao Wang, Andrew T. S. Wee, and
Jinhua Ye. 2023. Best Practices for Using Al When Writing Scientific Manuscripts.
ACS Nano 17, 5 (2023), 4091-4093. https://doi.org/10.1021/acsnano.3c01544
arXiv:https://doi.org/10.1021/acsnano.3c01544 PMID: 36848601.
Michael Chui, Eric Hazan, Roger Roberts, Alex Singla, Kate Smaje,
Alex Sukharevsky, Lareina Yee, and Rodney Zemmel. 2023. The
economic potential of Generative AI: The Next Productivity Fron-
tier. https://www.mckinsey.com/capabilities/mckinsey-digital/our-
insights/the-economic-potential-of-generative-ai-the-next-productivity-
frontier#introduction
Jack Conklin. 2005. A taxonomy for learning, teaching, and assessing: A revision
of Bloom’s taxonomy of educational objectives complete edition.
[7] Doraid Dalalah and Osama M.A. Dalalah. 2023. The false positives and false
negatives of generative Al detection tools in education and academic research:
The case of ChatGPT. The International Journal of Management Education 21, 2
(2023), 100822. https://doi.org/10.1016/j.ijme.2023.100822
[8] Adam DeRose. 2023. These companies have banned or limited ChatGPT at
work. HR Brew (May 2023). https://www.hr-brew.com/stories/2023/05/11/these-
companies-have-banned- chatgpt-in-the-office
[9] Ethan Dickey, Andres Bejarano, and Chirayu Garg. 2024. Al-Lab: A Framework for
Introducing Generative Artificial Intelligence Tools in Computer Programming
Courses. SN Computer Science 5, 6 (2024), 720. https://doi.org/10.1007/s42979-
024-03074-y
[10] Richard M Felder and Rebecca Brent. 2016. Teaching and Learning STEM: A
Practical Guide. John Wiley & Sons.
[11] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of
OpenAlI Codex on Introductory Programming. In Proceedings of the 24th Aus-
tralasian Computing Education Conference (Virtual Event, Australia) (ACE °22).
Association for Computing Machinery, New York, NY, USA, 10-19. https:
//doi.org/10.1145/3511861.3511863
Abbas Pourhosein Gilakjani, Leong Lai-Mei, and Hairul Nizam Ismail. 2013.
Teachers’ use of technology and constructivism. International Journal of Modern
Education and Computer Science 5, 4 (2013), 49.

[2

&

—_
=t

—
)

—_
S

[12

https://www.jdsupra.com/legalnews/chatgpt-in-the-workplace-a-legal-3653749/
https://www.jdsupra.com/legalnews/chatgpt-in-the-workplace-a-legal-3653749/
https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1109/MS.2023.3300574
https://doi.org/10.1109/MS.2023.3300574
https://doi.org/10.1021/acsnano.3c01544
https://arxiv.org/abs/https://doi.org/10.1021/acsnano.3c01544
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier#introduction
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier#introduction
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier#introduction
https://doi.org/10.1016/j.ijme.2023.100822
https://www.hr-brew.com/stories/2023/05/11/these-companies-have-banned-chatgpt-in-the-office
https://www.hr-brew.com/stories/2023/05/11/these-companies-have-banned-chatgpt-in-the-office
https://doi.org/10.1007/s42979-024-03074-y
https://doi.org/10.1007/s42979-024-03074-y
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863

[13] Karla Grossenbacher. 2023. ChatGPT in the Workplace: To Restrict or Embrace,

That Is The Question. Labor and Employment Law Newsletter - Spring 2023 51, 1
(Jun 2023). https://www.americanbar.org/groups/labor_law/publications/labor
employment_law_news/spring-2023/chatgpt-in-the-workplace/

Stephen Anthony Guerriero. 2023. 4 Ways Teachers Can Harness the Power
of ChatGPT. https://www.learningexplorer.com/blog/4-ways-teachers-can-
harness-the-power-of-chatgpt Accessed on: August 14, 2023.

[15] Juan David Gutiérrez. 2023. Guidelines for the Use of Artificial Intel-

ligence in University Courses. Version 4.3.1. Universidad del Rosario.
https://forogpp files.wordpress.com/2023/02/guidelines-for-the-use-of-
artificial-intelligence-in-university-courses-v4.3.1.pdf License C.C. BY 4.0.
Edmund Hansen. 2011. IDEA-based learning: A course design process to promote
conceptual understanding. Stylus. https://doi.org/10.4324/9781003445203

R. M. Harden. 1999. AMEE Guide No. 14: Outcome-based education: Part 1-An in-
troduction to outcome-based education. Medical Teacher 21,1 (1999), 7-14. https:
//doi.org/10.1080/01421599979969 arXiv:https://doi.org/10.1080/01421599979969
Samia Kabir, David N. Udo-Imeh, Bonan Kou, and Tianyi Zhang. 2023. Who
Answers It Better? An In-Depth Analysis of ChatGPT and Stack Overflow An-
swers to Software Engineering Questions. arXiv:2308.02312 [cs.SE] https:
//arxiv.org/abs/2308.02312

Matthew Koehler and Punya Mishra. 2009. What is technological pedagogical
content knowledge (TPACK)? Contemporary issues in technology and teacher
education 9, 1 (2009), 60-70.

Sam Lau and Philip J. Guo. 2023. From "Ban It Till We Understand It" to "Re-
sistance is Futile": How University Programming Instructors Plan to Adapt as
More Students Use AI Code Generation and Explanation Tools such as Chat-
GPT and GitHub Copilot. In Proceedings of the 2023 ACM Conference on Inter-
national Computing Education Research - Volume 1 (Chicago, IL, USA) (ICER
’23). Association for Computing Machinery, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3568813.3600138

Hyunsu Lee. 2023. The rise of ChatGPT: Exploring its
potential in medical education. Anatomical ~ Sciences Edu-
cation (14 March 2023). https://doi.org/10.1002/ase.2270

[32] Norman L Webb. 2002. Depth-of-knowledge levels for four content areas. Lan-

guage Arts 28, March (2002), 1-9.

Debora Weber-Wulff, Alla Anohina-Naumeca, Sonja Bjelobaba, Tomas Foltynek,
Jean Guerrero-Dib, Olumide Popoola, Petr Sigut, and Lorna Waddington. 2023.
Testing of Detection Tools for Al-Generated Text. arXiv:2306.15666 [cs.CL]
Michel Wermelinger. 2023. Using GitHub Copilot to Solve Simple Programming
Problems. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for
Computing Machinery, New York, NY, USA, 172-178. https://doi.org/10.1145/
3545945.3569830

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023.
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT.
arXiv:2302.11382 [cs.SE]

Ramazan Yilmaz and Fatma Gizem Karaoglan Yilmaz. 2023. Augmented intelli-
gence in programming learning: Examining student views on the use of ChatGPT
for programming learning. Computers in Human Behavior: Artificial Humans 1, 2
(2023), 100005. https://doi.org/10.1016/j.chbah.2023.100005

[37] J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.

2023. Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design
LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI "23). Association for Computing
Machinery, New York, NY, USA, Article 437, 21 pages. https://doi.org/10.1145/
3544548.3581388

Xiaoming Zhai, Kevin Haudek, Lehong Shi, Ross Nehm, and Mark Urban-Lurain.
2020. From substitution to redefinition: A framework of machine learning-based
science assessment. Journal of Research in Science Teaching 57, 9 (Oct. 2020),
1430-1459. https://doi.org/10.1002/tea.21658

Donna Harp Ziegenfuss. 2007. A Phenomenographic Analysis of Course Design
in the Academy. Journal of Ethnographic & Qualitative Research 2, 1 (2007).

arXiv:https://anatomypubs.onlinelibrary.wiley.com/doi/pdf/10.1002/ase.2270

[22] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khombh,

Michel C. Desmarais, and Zhen Ming (Jack) Jiang. 2023. GitHub Copilot Al pair

programmer: Asset or Liability? Journal of Systems and Software 203 (2023),

111734. https://doi.org/10.1016/j.jss.2023.111734

Eng Lieh Ouh, Benjamin Kok Siew Gan, Kyong Jin Shim, and Swavek Wlodkowski.

2023. ChatGPT, Can You Generate Solutions for my Coding Exercises? An

Evaluation on its Effectiveness in an undergraduate Java Programming Course.

arXiv:2305.13680 [cs.SE]

Kiruthika Ragupathi and Adrian Lee. 2020. Beyond fairness and consistency in

grading: The role of rubrics in higher education. Diversity and inclusion in global

higher education: Lessons from across Asia (2020), 73-95.

[25] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
Generation of Programming Exercises and Code Explanations Using Large Lan-
guage Models. In Proceedings of the 2022 ACM Conference on International Com-
puting Education Research - Volume 1 (Lugano and Virtual Event, Switzerland)
(ICER °22). Association for Computing Machinery, New York, NY, USA, 27-43.
https://doi.org/10.1145/3501385.3543957

[26] Jaromir Savelka, Arav Agarwal, Marshall An, Christopher Bogart, and Majd Sakr.
2023. Thrilled by Your Progress! Large Language Models (GPT-4) No Longer
Struggle to Pass Assessments in Higher Education Programming Courses. In
Proceedings of the The 19th ACM Conference on International Computing Education
Research (ICER 23, Vol. 1). https://doi.org/10.1145/3568813.3600142

[27] Muhammad Shidiq. 2023. The Use of Artificial Intelligence-Based Chat-GPT
and Its Challenges For The World of Education; From the Viewpoint of the
Development of Creative Writing Skills. Proceeding Of International Conference
On Education, Society And Humanity 1, 1 (2023), 353-357. https://ejournal.unuja.
ac.id/index.php/icesh/article/view/5614

[28] Jiahong Su and Weipeng Yang. 2023. Unlocking the Power of ChatGPT: A

Framework for Applying Generative Al in Education. ECNU Review of Education

0,0 (April 2023), 20965311231168423. https://doi.org/10.1177/20965311231168423

arXiv:https://doi.org/10.1177/20965311231168423

Taylor Telford and Pranshu Verma. 2023. Employees want ChatGPT

at work. Bosses worry they’ll spill secrets. The Washington Post (Jul

2023). https://www.washingtonpost.com/business/2023/07/10/chatgpt-safe-

company-work-ban-lawyers-code/

[30] Owen Kichizo Terry. 2023. I'm a Student. You Have No Idea How Much We're
Using ChatGPT. https://www.chronicle.com/article/im-a-student-you-have-
no-idea-how-much-were-using-chatgpt Accessed on: August 14, 2023.

[31] Ahmed TIili, Boulus Shehata, Michael Agyemang Adarkwah, Aras Bozkurt,
Daniel T. Hickey, Ronghuai Huang, and Brighter Agyemang. 2023. What if
the devil is my guardian angel: ChatGPT as a case study of using chatbots
in education. Smart Learning Environments 10, 1 (22 Feb 2023), 15. https:
//doi.org/10.1186/s40561-023-00237-x

[23

[24

[29

https://www.americanbar.org/groups/labor_law/publications/labor_employment_law_news/spring-2023/chatgpt-in-the-workplace/
https://www.americanbar.org/groups/labor_law/publications/labor_employment_law_news/spring-2023/chatgpt-in-the-workplace/
https://www.learningexplorer.com/blog/4-ways-teachers-can-harness-the-power-of-chatgpt
https://www.learningexplorer.com/blog/4-ways-teachers-can-harness-the-power-of-chatgpt
https://forogpp.files.wordpress.com/2023/02/guidelines-for-the-use-of-artificial-intelligence-in-university-courses-v4.3.1.pdf
https://forogpp.files.wordpress.com/2023/02/guidelines-for-the-use-of-artificial-intelligence-in-university-courses-v4.3.1.pdf
https://doi.org/10.4324/9781003445203
https://doi.org/10.1080/01421599979969
https://doi.org/10.1080/01421599979969
https://arxiv.org/abs/https://doi.org/10.1080/01421599979969
https://arxiv.org/abs/2308.02312
https://arxiv.org/abs/2308.02312
https://arxiv.org/abs/2308.02312
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1002/ase.2270
https://arxiv.org/abs/https://anatomypubs.onlinelibrary.wiley.com/doi/pdf/10.1002/ase.2270
https://doi.org/10.1016/j.jss.2023.111734
https://arxiv.org/abs/2305.13680
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3568813.3600142
https://ejournal.unuja.ac.id/index.php/icesh/article/view/5614
https://ejournal.unuja.ac.id/index.php/icesh/article/view/5614
https://doi.org/10.1177/20965311231168423
https://arxiv.org/abs/https://doi.org/10.1177/20965311231168423
https://www.washingtonpost.com/business/2023/07/10/chatgpt-safe-company-work-ban-lawyers-code/
https://www.washingtonpost.com/business/2023/07/10/chatgpt-safe-company-work-ban-lawyers-code/
https://www.chronicle.com/article/im-a-student-you-have-no-idea-how-much-were-using-chatgpt
https://www.chronicle.com/article/im-a-student-you-have-no-idea-how-much-were-using-chatgpt
https://doi.org/10.1186/s40561-023-00237-x
https://doi.org/10.1186/s40561-023-00237-x
https://arxiv.org/abs/2306.15666
https://doi.org/10.1145/3545945.3569830
https://doi.org/10.1145/3545945.3569830
https://arxiv.org/abs/2302.11382
https://doi.org/10.1016/j.chbah.2023.100005
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1002/tea.21658

Supplementary Material: A Framework for
Using Generative Al to Assist in Course
Content Development

Section 6 contains a ChatGPT4.0, Section 7 contains a nearly
identical interaction with Bing Copilot.

6 CHATGPT 4.0

This is a nearly identical conversation (from the user’s side) with
ChatGPT 4.0 as we had with Bing Copilot.

Conversation took place in November of 2023.

User: Act as a professor of computer science from a top 10 engi-
neering university. You are teaching a course about data structures
and algorithms to Computer Science and Data Science majors (stu-
dents take this course in their sophomore year). So far, you have
covered primitive data structures, asymptotic runtime analysis, and
dynamic data structures. The last class was about binary search
trees, emphasizing the problems we could get with them. Please
give me five learning objectives for a class discussing red-black
trees. Use Bloom’s revised taxonomy of verbs for the objectives.

ChatGPT 4: Certainly! When structuring learning objectives for
a class on red-black trees using Bloom’s revised taxonomy, we want
to ensure that the objectives cover a range of cognitive processes,
from remembering and understanding basic concepts to applying,
analyzing, evaluating, and creating based on these concepts. Here
are five learning objectives for a class on red-black trees:

(1) Remember: Recall and describe the properties that define
a red-black tree, including the color of nodes and balance
requirements.

(2) Understand: Explain the significance of each red-black tree
property in maintaining a balanced tree and how it affects the
tree’s performance for operations such as insertion, deletion,
and search.

(3) Apply: Implement the insertion operation in a red-black
tree, ensuring that the tree maintains its defining properties
after adding a new node.

(4) Analyze: Compare and contrast the mechanisms of balanc-
ing in red-black trees with those in AVL trees, highlighting
the differences in rotations and color changes.

(5) Evaluate: Assess the advantages of using a red-black tree
in a particular scenario, such as databases, and justify its
suitability over other types of binary search trees.

By the end of the class, students should have a comprehensive
understanding of red-black trees, including their structure, opera-
tions, and practical applications, as well as an ability to critically
evaluate their use in various computing scenarios.

User: I like your first three learning objectives! With these in
mind, please propose a lecture outline for a 50-minute class.

ChatGPT 4: Certainly! Here’s a lecture outline for a 50-minute
class on Red-Black Trees designed around the first three learning
objectives.

Lecture Outline: Red-Black Trees

(1) Introduction (5 minutes)

o Brief review of binary search trees and their limitations.
e Introduction to red-black trees and their importance in
maintaining balanced trees.

(2) Recap of Red-Black Tree Properties (10 minutes)
o Objective: Remember the defining properties.
e Enumerate the properties of red-black trees.
e Show visual examples of each property for clarity.
(3) Understanding Red-Black Trees (10 minutes)
e Objective: Understand the significance of properties.
e Explain why red-black trees remain balanced (brief touch
on the concept of "black height").
e Discuss the impact of red-black tree properties on opera-
tion performance.
Red-Black Tree Insertion Operation (15 minutes)
e Objective: Apply the insertion operation.
e Step-by-step insertion algorithm explanation.
e Live coding example or walk through an animated inser-

—~
N
=

tion process.
e Discuss the cases of re-coloring and rotations after inser-
tion.
(5) Class Practice and Interactive Problem Solving (5 min-
utes)
o Students try to insert a node into a red-black tree on paper
or using classroom software.
e Quick discussion and resolution of common issues or mis-
takes.
(6) Q&A Session (5 minutes)
o Address student questions and clarify doubts.
e Encourage questions that lead to deeper understanding
and application of concepts.

Each section of the lecture is designed to build upon the previ-
ous one, ensuring that students have a clear and comprehensive
understanding of red-black trees by the end of the session. The
interactive problem-solving segment allows students to apply their
knowledge immediately, which can help to reinforce learning and
identify areas that may need more explanation.

User: Let’s review items 4 and 5. They give too much attention to
the insert operation and no mention of the delete operation. Please
adjust these two items properly so both operations are discussed.

ChatGPT 4: Certainly! Adjusting the outline to give equal at-
tention to both insert and delete operations for red-black trees, we
can have the following:

4. Red-Black Tree Insertion and Deletion Operations (20
minutes)

e Objective: Apply the insertion and deletion operations.

e Breakdown the insertion algorithm, including cases of re-
coloring and rotations.

e Discuss the deletion process, emphasizing the complexity of
fixing the tree afterwards.

e Use visual aids to demonstrate both operations and their
cases.

e Highlight the symmetry between insertion and deletion in
terms of maintaining tree properties.

5. Class Practice and Interactive Problem Solving (10 min-
utes)

o Divide the students into pairs or small groups and have them
work through example problems that require them to insert
and delete nodes in a red-black tree.

e Use classroom clickers or online polls to choose the correct
sequence of operations after each insertion or deletion.

e Reconvene and discuss the steps taken and the reasoning
behind them, correcting misconceptions and reinforcing cor-
rect understanding.

This revised outline ensures that students are exposed to both
critical operations of red-black trees, understand the challenges
associated with each, and can practice applying their knowledge in
a controlled, collaborative environment.

User: I will keep your Class Practice and Interactive Problem
Solving as an out-of-class activity (most likely a lab session). Please
give me the full outline for the class.

ChatGPT 4: Understood. With the Class Practice and Interactive
Problem Solving set as a lab session, here is the full revised lecture
outline, focusing on both insertion and deletion operations during
the class: Lecture Outline: Red-Black Trees

(1) Introduction (5 minutes)
e Quick recap on binary search trees.
e Introduction to red-black trees and their role in self-balancing
data structures.
(2) Recap of Red-Black Tree Properties (10 minutes)
e Review the five essential properties of red-black trees.
o Illustrate each property with diagrams or animations.
o Emphasize the role these properties play in maintaining a
balanced tree.
(3) Understanding Red-Black Trees (10 minutes)
e Discuss the significance of maintaining red-black tree
properties.
o Explain the impact on performance for search, insert, and
delete operations.
e Use visual aids to show how these properties affect tree
balance and operation complexity.
(4) Red-Black Tree Insertion Operation (10 minutes)
e Step through the insertion algorithm, emphasizing the
cases for re-coloring and rotations.
e Demonstrate an example insertion, visualizing the adjust-
ments made to maintain properties.
(5) Red-Black Tree Deletion Operation (10 minutes)
e Describe the deletion process and the additional complex-
ity compared to insertion.
o Walk through a deletion example, showing how the tree
compensates for the removed node.
(6) Comparison of Insertion and Deletion (5 minutes)
e Summarize and compare the steps and complexity of in-
sertion versus deletion.
e Discuss common pitfalls and how to avoid them.
(7) Q&A and Wrap-up (5 minutes)
e Open the floor for questions, encouraging students to
think about the operations in depth.
o Offer insights into how red-black trees are used in real-
world applications.
e Assign the interactive problem-solving activity as a lab
session.

This outline should cover the essential aspects of red-black trees
in the allotted 50 minutes, providing a balanced view of both in-
sertion and deletion operations and setting the stage for a more
hands-on exploration in the subsequent lab session.

User: This looks good. Let’s work on the specific pieces of the
lecture. For the Introduction item, please give me a two-paragraph
recap on binary search trees.

ChatGPT 4: Certainly, here’s a concise recap on binary search
trees for the Introduction part of your lecture:

Introduction to Binary Search Trees Binary search trees
(BSTs) are a fundamental data structure that organizes data in a
hierarchical manner for efficient retrieval, insertion, and deletion
operations. Each node in a BST contains a unique key, and by def-
inition, the key in any node is larger than the keys in all nodes
in its left subtree and smaller than those in its right subtree. This
property of binary search trees facilitates efficient searching, akin
to a binary search algorithm in a sorted array, where the average
time complexity for search operations is O(log n) in a balanced
tree. However, this efficiency hinges on the tree’s balance; the more
unbalanced a tree becomes, with nodes heavily skewed to one side,
the closer the search time complexity moves towards O(n), which
is no better than a linear search through a list.

The insertion and deletion operations in a BST also follow spe-
cific patterns to maintain the binary search property. When insert-
ing a new key, the tree is traversed starting from the root, making
a series of decisions to go left or right, depending on whether the
key to insert is smaller or larger than the node at each step. Once
the correct position is found, the new key is inserted as a leaf node.
Deletion, on the other hand, can be more complex, especially when
the node to be deleted has two children. In such cases, the node’s
key is typically replaced with its in-order successor or predecessor,
and the successor/predecessor node is then deleted, ensuring the
BST properties remain intact. Despite these mechanisms, without
additional measures to maintain balance, the performance of BSTs
can degrade over time as operations continually add and remove
nodes, leading to an unbalanced structure.

User: I like that, but call it a recap of binary search trees.

ChatGPT 4: Absolutely, here’s the revised introduction with
the specified heading:

Recap of Binary Search Trees Binary search trees (BSTs) serve
as a pivotal data structure for organizing data in a manner that
supports efficient data retrieval, insertion, and deletion. At the core
of a BST’s structure is a key node, which imposes a strict ordering:
every node to the left has a smaller key, and every node to the right
has a larger key. This intrinsic ordering of BSTs underpins their
capability to perform search operations rapidly, akin to a binary
search in a sorted array, yielding an average-case time complexity of
O(log n) when the tree is balanced. The efficiency of BSTs, however,
is contingent on this balanced structure. An unbalanced BST, with
a majority of nodes skewed to one side, will deteriorate towards the
worst-case time complexity of O(n), analogous to a linear search.

Insertions and deletions within BSTs are operations bound by
the need to maintain the binary search property. Insertion begins
at the root, traversing the tree and choosing a direction—left for a
smaller key and right for a larger key—until reaching an appropri-
ate leaf position for the new key. Conversely, deletion is inherently
more complex, especially when the target node has two children.

The common strategy involves substituting the key of the node
to be deleted with its in-order successor or predecessor and then
recursively deleting that node. These procedures ensure the BST’s
structural integrity is preserved. Nonetheless, the inherent chal-
lenge lies in maintaining the balance of the tree through successive
insertions and deletions, as an unbalanced tree can significantly
hinder the BST’s performance capabilities.

User: Let’s keep working on the introduction part of the lecture.
Please give me an Introduction to red-black trees and their role in
self-balancing data structures.

ChatGPT 4: Introduction to Red-Black Trees Red-black trees
are an ingenious type of self-balancing binary search tree, a sophis-
ticated data structure that overcomes the fundamental issue of
maintaining balance after insertion and deletion operations. Each
node in a red-black tree stores an extra bit for denoting the color
of the node, either red or black, which is instrumental in enforcing
a balanced tree structure. This color attribute, along with specific
rules pertaining to node colors and black heights, ensures that the
tree remains approximately balanced at all times. As a result, red-
black trees guarantee that the tree height remains logarithmic in
relation to the number of nodes, thus ensuring that search, insert,
and delete operations can be performed in O(log n) time, even in
the worst-case scenario.

The real-world significance of red-black trees is profound, par-
ticularly in computer science applications that require rapid data
look-up and modification, such as database indexes and associa-
tive arrays. The design of red-black trees addresses the imbalance
that can occur in simple binary search trees, where the depth can
become linear in the number of elements, leading to inefficient
operations. By automatically rearranging themselves during inser-
tions and deletions to preserve balance, red-black trees provide a
reliable foundation for dynamic data storage and retrieval systems.
Their ability to self-balance with minimal overhead makes them an
invaluable tool in the repertoire of data structures, ensuring that
they remain a critical component in the efficient implementation
of various abstract data types.

User: Good. The second part of the lecture is about formal defi-
nitions and properties of red-black trees. Let’s start with the five
essential properties of red-black trees. Please describe them for-
mally. Remember, you are a professor of computer science from a
top 10 engineering university.

ChatGPT 4: Formal Definitions and Properties of Red-
Black Trees In red-black trees, the structure is maintained by
a set of rules—referred to as properties—that must be preserved
following all insertion and deletion operations. Here are the five
essential properties that define a red-black tree:

(1) Property One: Node Coloring Every node is colored either
red or black. This binary coloring is crucial for maintaining
a balanced tree and is a critical part of the red-black tree’s
self-balancing properties.

(2) Property Two: Root Blackness The root of the tree is always
black. This property ensures that the path from the root to
the leaves has a consistent number of black nodes, which is
fundamental to maintaining balance.

(3) Property Three: Red Node Children All red nodes must have
black children (also known as the "no two consecutive red

nodes" rule). This property prevents the formation of red
"runs" in the tree, which would indicate an imbalance.

(4) Property Four: Uniform Black Height Every path from a
node to its descendant NULL nodes must have the same
number of black nodes. This uniform number of black nodes
is known as the "black height," and its consistency is key to
maintaining balance across the tree.

(5) Property Five: New Node Insertions All new nodes are in-
serted as red nodes. While this might momentarily disrupt
the tree’s balance, it simplifies the rebalancing process that
follows the insertion.

These properties collectively ensure that the longest path from
the root to the farthest leaf is no more than twice as long as the
shortest path, which implies that the tree remains approximately
balanced. This balance is what allows the red-black tree to ensure
a worst-case time complexity of O(log n) for search, insertion, and
deletion operations, thus maintaining efficient performance.

User: Your property five is not an actual property of red-black
trees but an important consideration for the insertion algorithm.
The property you are missing says that null nodes are black. Please
reformulate the properties.

ChatGPT 4: Apologies for the oversight. Let’s correct the formal
definition and properties of red-black trees:

Formal Definitions and Properties of Red-Black Trees A
red-black tree is a binary search tree with an additional bit of storage
per node: its color, which can be either red or black. The colors
of the nodes are used to ensure the tree remains balanced during
insertions and deletions. Below are the five essential properties that
every red-black tree must satisfy:

(1) Property One: Node Coloring Each node is either red or
black. This property is fundamental to the operation of red-
black trees, as the color assigned to each node is pivotal to
enforcing balance throughout the structure.

(2) Property Two: Root Blackness The root of the tree is always

black. By convention, the root’s color is black to maintain

consistent black depth across the tree.

Property Three: Red Node Constraints Red nodes cannot

have red children, a rule often stated as "a red node cannot

have a red parent". This ensures that no path will have two
consecutive red nodes, thus preventing significant imbal-
ances in the tree’s depth.

(4) Property Four: Black Height Consistency Every path from a
node to any of its descendant NIL nodes goes through the
same number of black nodes. This number of black nodes is
called the black height. This property guarantees that the
tree remains balanced, with the path from the root to the
farthest leaf not more than twice as long as the shortest path.

(5) Property Five: NIL Nodes as Black All leaves (NIL nodes) are
black. In a red-black tree, the leaves are typically represented
as NULL, which are considered black nodes. This convention
simplifies the rules for red nodes and black height since
NULL nodes end up contributing to the black height of the
tree.

—
SY)
=

The enforcement of these properties after every insertion and
deletion is what allows the red-black tree to self-balance. It is the

interaction of these properties that ensures the operations on red-
black trees can be done in O(log n) time, which is critical for main-
taining the high performance of the data structures that utilize
them.

User: Thanks. To guarantee the formality of the definitions,
please give me the mathematical proof for the claim that, by main-
taining the black height of the tree, its respective height is O(log n).

ChatGPT 4: To prove that the height of a red-black tree is
O(log n) by maintaining the black height, we consider the relation-
ship between the number of nodes in the tree and the "black height”
- the number of black nodes on any path from the root to a leaf.

Definitions:

o Let n be the number of nodes in the red-black tree.

o Let h be the height of the tree (the longest path from the root
to a leaf).

o Let bh be the black height of the tree (the number of black
nodes on any path from the root to a leaf).

Properties Used in the Proof:

(1) A red node cannot have a red child (Property 3).
(2) All paths from the root to the leaves contain the same number
of black nodes (Property 4).

Lemma: A red-black tree with black height bh has at least 26% —1
internal nodes.
Proof of Lemma:

o The shortest possible path from the root to a leaf has all black
nodes (by Property 4). There are bhbh black nodes on this
path.

o The longest possible path alternates between red and black
nodes. Because of Property 3, the path cannot have two
consecutive red nodes, so the path has at most 25" _ 1 nodes
since it could start with a red node (the root is always black,
but the child can be red) and alternate from there.

o The smallest number of nodes in a perfectly balanced binary
tree of height h (where h is the number of edges on the
longest path from the root to a leaf) is 2h—1 (thisisa property
of a complete binary tree).

Proof of Height Complexity:

e Because all paths have the same number of black nodes, the
shortest path has bh nodes and the longest path can have at
most twice as many, 2bh,

e So, in the worst case, the height A of the tree is

e From the lemma, a tree with black height bh has at least
obh

2bh.

— 1 internal nodes. Therefore, n > 2bh _ 1,

o Solving for bh, we get bh < log, n + 1.

e Therefore, h < 28" < 2log, n + 1, which simplifies to h =
O(logn).

Thus, the height of a red-black tree is logarithmically bound by
the number of nodes in the tree, proving that operations such as
search, insert, and delete can be performed in O(log n) time.

User: This is great but also too much for the 20 minutes of
the class allotted towards the last two sections of the class. Please
remind me of the outline for these two sections and give me a
shorter script for them.

ChatGPT 4: Certainly, let’s revisit the outline for the last two
sections of your class on red-black trees and provide a succinct
script for each part.

Lecture Outline:

(1) Red-Black Tree Insertion Operation (10 minutes)

o Discuss the insertion process.

e Walk through the steps of fixing violations after insertion.
(2) Red-Black Tree Deletion Operation (10 minutes)

o Explain the deletion process.

e Outline the steps of rebalancing the tree after deletion.

Shorter Script for Section 4: Red-Black Tree Insertion Oper-
ation "In the next ten minutes, we’ll unpack the insertion operation
for red-black trees. Insertions begin as they would in a standard
binary search tree, with the new node being initially inserted as a
red node to maintain balance more easily. However, this can cause
violations of our red-black properties, specifically the potential for
two consecutive red nodes. To resolve these issues, we perform a
series of color changes and tree rotations. We categorize these fixes
into three main cases:

e Case 1 deals with a red uncle node and is resolved by recol-
oring.

e Case 2 and Case 3 handle a black uncle node, requiring ro-
tations — a single rotation for Case 2 and a double rotation
for Case 3. Each case is a step towards re-establishing our
red-black properties, ensuring the tree remains balanced.
Let’s quickly walk through an example.."

Shorter Script for Section 5: Red-Black Tree Deletion Op-
eration "Moving on to deletion, which we have the remaining ten
minutes to cover. Deletion in a red-black tree is more intricate due
to the need to replace the deleted node and then fix any potential
property violations. When a node is removed, we may be left with
a ’double black’ issue, where a black node has been removed from a
black parent, causing an imbalance. To correct this, we have several
cases to consider, similar to insertion:

e If a sibling node is red, we perform a rotation to move the
problem down the tree.

o If the sibling and its children are black, we recolor and move
up the tree to address the double black at the parent.

o If the sibling has a red child, we perform rotations and recol-
orings to balance the tree. Let’s illustrate this with a simple
deletion example, focusing on how these operations restore
our crucial properties.”

By condensing the explanations and focusing on the high-level
process rather than delving into all the intricate details, you’ll be
able to cover both insertion and deletion in the allotted 20 minutes,
leaving room for examples and student engagement.

User: Please be careful. The sections we were working on were
the recap of Red-Black tree properties and the Understanding Red-
Black trees section. Please remind me and yourself of the approved
outline for the lecture (don’t forget, you’re acting like a professor
of computer science from a top-10 engineering university).

ChatGPT 4: I apologize for the confusion. Let’s revisit the cor-
rect sections of your lecture outline on red-black trees and provide
a concise script for each.

Approved Lecture Outline:

(1) Introduction (5 minutes)
o Recap of binary search trees.
(2) Recap of Red-Black Tree Properties (10 minutes)
o Formal definitions and descriptions of the five essential
properties of red-black trees.
(3) Understanding Red-Black Trees (10 minutes)
e Discussion on the significance of red-black tree properties
and their impact on the tree’s operations and performance.

Shorter Script for Section 2: Recap of Red-Black Tree Prop-
erties "In the next ten minutes, we’ll revisit the formal properties
that define red-black trees. These properties are pivotal to ensuring
the self-balancing nature of these trees. They are:

(1) Node Color: Every node is either red or black, creating the
foundation for our balancing rules.

(2) Root Property: The root of the tree is always black, which
anchors our black path-lengths.

(3) Red Node Property: If a node is red, then both its children
must be black. This prevents consecutive red nodes.

(4) Black Height Property: Every path from a node to its descen-
dant leaves has the same number of black nodes, which we
refer to as the black height.

(5) Leaf Nodes: All leaves (NIL nodes) are black, simplifying the
enforcement of the tree properties.

Remember, these rules work in concert to maintain a balanced
tree, ensuring that the longest path from the root to a leaf is no
more than twice the length of the shortest path."

Shorter Script for Section 3: Understanding Red-Black
Trees

"Now, let’s delve into the significance of these properties for
the next ten minutes. The essence of a red-black tree’s efficiency
lies in its balanced structure. The stipulation that each path from
root to leaf has the same black height prevents the formation of
disproportionately long branches. This uniformity guarantees that
the worst-case height of the tree remains logarithmic relative to
the number of nodes.

When we insert or delete nodes, the tree’s self-balancing proper-
ties necessitate a series of color changes and rotations to restore bal-
ance. But why do we care about balance? It’s simple: balance trans-
lates to efficiency. A balanced tree ensures that the time complexity
for search, insertion, and deletion remains at O(logn), which is
crucial for high-performance computing tasks. Keep in mind, a red-
black tree doesn’t aim to be perfectly balanced; rather, it aims to be
balanced enough to guarantee this efficiency, which is a beautiful
instance of practical optimization.”

This script covers the fundamental properties and understanding
of red-black trees concisely, while respecting the allotted time for
each section.

User: To make sure that we are complete with the first parts of
the lecture, please give me a short outline of the proof about the
height or red-black trees to be O(log n).

ChatGPT 4: Certainly, a concise outline of the proof that the
height of red-black trees is O(log n) would include the following
points:

Outline of Proof:

(1) Black Height and Complete Trees:

o Define black height (the number of black nodes from the
root to a leaf, not counting the leaf node itself).

o Relate black height to a complete binary tree, which is a
perfect tree where all levels are fully filled.

o State that the minimum number of nodes in a complete
binary tree of black height bh is 2bh 1,

(2) Red-Black Tree Properties:

o Reiterate the red-black tree properties relevant to the
proof, particularly the property that all paths from the
root to the leaves have the same number of black nodes.

(3) Shortest and Longest Paths:

o Explain that the shortest possible path from the root to
any leaf in a red-black tree has bh nodes, all of which are
black.

o Argue that the longest path can have at most double the
number of black nodes since it can alternate between red
and black nodes (but cannot have two consecutive red
nodes).

(4) Counting Nodes:

o Use the properties to show that the shortest path in a

red-black tree is at least half the length of the longest

path.
e Deduce that the number of nodes n in the tree satisfies
N > 2bh 1,

(5) Logarithmic Height:
o Take logarithms to show bh < log2(n + 1).
e Since the height h is less than twice the black height,
conclude h < 2bh < 2log(n + 1).
o Simplify to show that A = O(log(n)).

This outline provides a structured approach to prove that the
height of a red-black tree is logarithmic with respect to the number
of nodes, keeping the explanation high-level and suitable for a brief
lecture segment.

User: That is good. Thanks! Let’s work on the part of the lec-
ture dedicated to the insert and delete operations. For the insert
operation, please give me its main motivation and pseudocode.

ChatGPT 4: Insert Operation in Red-Black Trees Motivation
for Insertion Operation: The primary motivation for the insertion
operation in red-black trees is to add a new node while preserving
the red-black properties. Since direct insertion could violate these
properties, particularly the red node property and black height
uniformity, an insertion algorithm must include a re-balancing
procedure. This re-balancing is crucial to maintain the tree’s bal-
anced state, which in turn ensures that the tree’s operations remain
efficient, with a time complexity of O(log(n)). Pseudocode for In-
sertion Operation:

RB-INSERT(T, z)

// T is the red-black tree, and z is the node to be inserted

y = NIL
x = T.root
while x \neqg NIL
y = X
if z.key < x.key
x = x.left
else
X = x.right

z.parent =y
if y = NIL
T.root = z // Tree T was empty
else if z.key < y.key
y.left = z
else
y.right = z
z.left = NIL
z.right = NIL
z.color = RED // Insert node as red
RB-INSERT-FIXUP(T, z) // Rebalance the tree

RB-INSERT-FIXUP(T, z)

while z.parent.color == RED
if z.parent == z.parent.parent.left
y = z.parent.parent.right // y is z's uncle
if y.color == RED

// Case 1: z's uncle y is red
z.parent.color = BLACK
y.color = BLACK
z.parent.parent.color = RED
z = z.parent.parent
else
if z == z.parent.right
// Case 2: z is a right child
z = z.parent
LEFT-ROTATE(T, z)
// Case 3: z is a left child
z.parent.color = BLACK
z.parent.parent.color = RED
RIGHT-ROTATE(T, z.parent.parent)
else
// Same as above with "right" and "left" exchanged
T.root.color = BLACK // Ensure root is black

The RB-INSERT-FIXUP function corrects the red-black proper-
ties that might have been violated during insertion. This involves a
series of checks and adjustments, including potential color changes
and rotations (left or right), which are classified into several cases:

e Case 1: Red uncle, which is resolved by recoloring.

o Case 2: Black uncle and the new node is a right child, requir-
ing a left rotation.

e Case 3: Black uncle and the new node is a left child, requiring
a right rotation.

The exact operations performed depend on the structure of the
tree at the time of insertion. This procedure ensures that the red-
black properties are preserved, maintaining the tree’s balanced
state.

User: Please do the same for the delete operation.

ChatGPT 4: Delete Operation in Red-Black Trees Motiva-
tion for Deletion Operation: The deletion operation in red-black
trees is crucial for removing nodes while preserving the tree’s bal-
anced state. A straightforward removal could disrupt the red-black
properties, especially if a black node is removed, potentially un-
balancing the tree. This unbalance could degrade the performance
of the tree’s operations. Hence, the deletion algorithm includes a
meticulous re-balancing process called ’fix-up’ to adjust colors and
perform rotations to uphold the tree’s properties and efficiency.

Pseudocode for Deletion Operation:

RB-DELETE(T, z)

// T is the red-black tree, and z is the node to be deleted

y =z
y_original_color = y.color
if z.left == NIL

X = z.right

RB-TRANSPLANT(T, z, z.right)

else if z.right == NIL

x = z.left

RB-TRANSPLANT(T, z, z.left)
else

y = TREE-MINIMUM(z.right)
y_original_color = y.color
X = y.right
if y.parent == z
X.parent =y
else
RB-TRANSPLANT (T, y, y.right)
y.right = z.right
y.right.parent =y
RB-TRANSPLANT(T, z, y)

y.left = z.left
y.left.parent =y
y.color = z.color

if y_original_color == BLACK
RB-DELETE-FIXUP(T, x)

RB-DELETE-FIXUP(T, x)
while x \neqg T.root and x.color
if x x.parent.left
w = x.parent.right
if w.color == RED
w.color = BLACK
x.parent.color = RED
LEFT-ROTATE(T, x.parent)

BLACK

w = Xx.parent.right
if w.left.color == BLACK and w.right.color == BLACK
w.color = RED
X = X.parent
else
if w.right.color == BLACK
w.left.color = BLACK

w.color = RED

RIGHT-ROTATE(T, w)

w = Xx.parent.right
w.color = x.parent.color
x.parent.color = BLACK
w.right.color = BLACK
LEFT-ROTATE(T, x.parent)
x = T.root

else

// Same as then clause with "right" and "left" exchanged

x.color = BLACK

The RB-DELETE-FIXUP function is designed to restore the red-
black properties that might have been violated during deletion. This
involves several cases that are addressed depending on the colors of

the sibling and the sibling’s children, which may require recoloring
and rotations. The goal is to redistribute or adjust the black heights
so that the tree remains balanced after the deletion:

o If the sibling is red, a rotation is performed to set up further
adjustments.

o If the sibling and its children are black, recoloring occurs
and the problem ascends the tree.

o If the sibling has a red child, rotations and recoloring are
performed to fix the imbalance.

This fix-up procedure ensures the red-black properties are intact
after deletion, maintaining the tree’s balanced state and operation
efficiency.

User: This is good. Please remind me of the class outline again.

ChatGPT 4: Certainly! Here’s the class outline we’ve established
for your lecture on red-black trees:

Lecture Outline: Red-Black Trees

(1) Introduction (5 minutes)
e A recap on binary search trees.
(2) Recap of Red-Black Tree Properties (10 minutes)
e Formal definitions and descriptions of the five essential
properties of red-black trees.
(3) Understanding Red-Black Trees (10 minutes)
e Discussion on the significance of red-black tree properties
and their impact on the tree’s operations and performance.
(4) Red-Black Tree Insertion Operation (10 minutes)
e Main motivation for the insertion operation.

o Explanation of the insertion process and pseudocode overview.

(5) Red-Black Tree Deletion Operation (10 minutes)
e Main motivation for the deletion operation.

o Explanation of the deletion process and pseudocode overview.

(6) Q&A and Wrap-up (5 minutes)
e Open the floor for questions and engage with the students
to clarify any doubts.
e Summarize the key points covered in the lecture.
e Mention of out-of-class activities related to red-black trees,
such as lab sessions or problem sets.

This outline is designed to cover the fundamentals and complex-
ities of red-black trees within a single lecture session, providing a
balance between theoretical understanding and practical applica-
tion.

User: Awesome. Let’s wrap it up and give me the summary of
the lecture.

ChatGPT 4: Lecture Summary: Red-Black Trees Today, we
revisited the fundamental aspects of binary search trees, highlight-
ing their efficiency and the challenges faced when they become
unbalanced. We then introduced red-black trees, a self-balancing
variant of binary search trees, which mitigate these challenges
through a set of well-defined properties.

We delved into the five essential properties of red-black trees:

(1) Each node is colored either red or black.

(2) The root is always black.

(3) Red nodes cannot have red children.

(4) All paths from a node to its descendant leaves contain the
same number of black nodes.

(5) All leaves (NIL nodes) are black.

Understanding these properties is crucial as they ensure the
tree remains balanced after every insertion and deletion, thereby
maintaining the operations’ time complexity at O(log(n)).

We covered the insertion operation, which adds a node to the
tree and then enforces the red-black properties through a series
of rotations and color changes if necessary. We also discussed the
more complex deletion operation, which removes a node and then
performs a fix-up process to restore the tree’s balanced state.

The motivation behind both operations is to maintain the high
efficiency of the tree’s search, insert, and delete operations by pre-
serving its structured balance. The pseudocode provided offers a
blueprint for implementing these operations, reinforcing the algo-
rithmic precision required to maintain the integrity of the red-black
trees.

In conclusion, red-black trees are a robust data structure, ideal
for applications that require efficient data storage and retrieval.
The balancing of the tree is fundamental to its performance, and
understanding how to maintain this balance through insertion and
deletion operations is key to utilizing red-black trees effectively.

Remember, today’s lecture content is foundational for your up-
coming lab session, where you will apply these concepts in practice.
Please review the pseudocode and properties discussed as prepa-
ration for the hands-on activities. Thank you for your attention,
and I look forward to seeing how you all tackle the intricacies of
red-black trees in our lab.

User: Please compile the learning objectives, outline, and content
into a single large lecture document.

ChatGPT 4: Lecture Document: Understanding Red-Black
Trees Learning Objectives: By the end of this lecture, students
should be able to:

(1) Recall and describe the properties that define a red-black
tree.

(2) Explain the significance of each red-black tree property in
maintaining a balanced tree and how it affects the tree’s
performance for operations such as insertion and deletion.

(3) Implement the insertion operation in a red-black tree, en-
suring that the tree maintains its defining properties after
adding a new node.

(4) Outline and comprehend the deletion process in a red-black
tree and the steps taken to fix any violations of the tree’s
properties.

Lecture Outline:

(1) Introduction (5 minutes)
e Recap of binary search trees.
(2) Recap of Red-Black Tree Properties (10 minutes)
o Formal definitions and descriptions of the five essential
properties of red-black trees.
(3) Understanding Red-Black Trees (10 minutes)
o Discussion on the significance of red-black tree properties
and their impact on the tree’s operations and performance.
(4) Red-Black Tree Insertion Operation (10 minutes)
e Main motivation for the insertion operation.

e Explanation of the insertion process and pseudocode overview.

(5) Red-Black Tree Deletion Operation (10 minutes)
e Main motivation for the deletion operation.
e Explanation of the deletion process and pseudocode overview.

(6) Q&A and Wrap-up (5 minutes)
o Open the floor for questions and engage with the students
to clarify any doubts.
e Summarize the key points covered in the lecture.
e Mention of out-of-class activities related to red-black trees,
such as lab sessions or problem sets.

Content: 1. Introduction to Binary Search Trees Binary
search trees (BSTs) are a cornerstone of efficient data organization,
allowing for quick data retrieval, insertion, and deletion. BSTs main-
tain a specific order, where each node’s left descendants are less
than the node and right descendants are greater. While BSTs are
efficient with a balanced tree, the cost of operations can degrade to
O(n) if the tree becomes unbalanced.

2. Recap of Red-Black Tree Properties Red-black trees en-
hance BSTs by ensuring the tree remains balanced with each oper-
ation through these properties:

Nodes are either red or black.

The root is always black.

Red nodes have black children.

Every path from a node to its descendant NIL nodes has the
same number of black nodes.

e All NIL nodes are black.

3. Understanding Red-Black Trees The properties of red-black
trees work together to maintain a balanced height, ensuring that
operations remain efficient at O(log n) complexity. This balance is
key to the performance and reliability of red-black trees in various
applications.

4. Red-Black Tree Insertion Operation The insertion opera-
tion in red-black trees starts by adding the node as a red node to
maintain balance and then making necessary adjustments:

o If a violation occurs, we perform rotations and recolorings
to fix the tree.

e The goal is to maintain the essential properties of the red-
black tree through this process.

Insertion Pseudocode:
RB-INSERT(T, z)

RB-INSERT-FIXUP(T, z)

5. Red-Black Tree Deletion Operation Deletion involves re-
moving a node and then ensuring the tree remains balanced by
addressing any property violations through a series of rotations
and color changes.

Deletion Pseudocode:

RB-DELETE(T, z)
RB-DELETE-FIXUP(T, x)

6. Q&A and Wrap-up We concluded the lecture with a dis-
cussion and clarification session, encouraging students to think
critically about the mechanisms of red-black trees and preparing
them for practical applications in the upcoming lab.

This document encapsulates the goals, structure, and detailed
content of the lecture on red-black trees. It should serve as a com-
prehensive guide for both teaching and review.

7 BING COPILOT

This is a nearly identical conversation (from the user’s side) with
Bing Copilot as we had with ChatGPT 4.0.

Conversation took place in November of 2023.

User: Act as a professor of computer science from a top 10 engi-
neering university. You are teaching a course about data structures
and algorithms to Computer Science and Data Science majors (stu-
dents take this course in their sophomore year). So far, you have
covered primitive data structures, asymptotic runtime analysis, and
dynamic data structures. The last class was about binary search
trees, emphasizing the problems we could get with them. Please
give me five learning objectives for a class discussing red-black
trees. Use Bloom’s revised taxonomy of verbs for the objectives.

Bing Copilot: Sure, here are five learning objectives for a class
discussing red-black trees using Bloom’s revised taxonomy of verbs:

(1) Understand the concept of red-black trees: Students should
be able to explain what red-black trees are, their properties,
and why they are used in computer science.

(2) Analyze the structure of red-black trees: Students should be
able to dissect a given red-black tree, identify its components,
and explain the role of each component.

(3) Apply the operations of red-black trees: Students should be
able to perform basic operations on red-black trees such as
insertion, deletion, and searching.

(4) Evaluate the performance of red-black trees: Students should
be able to assess the time complexity of operations on red-
black trees and compare it with other data structures.

(5) Create red-black trees: Given a set of data, students should
be able to construct a red-black tree.

These objectives aim to provide a comprehensive understanding
of red-black trees, their structure, operations, performance, and
practical applications. They are designed to promote higher-order
thinking skills as per Bloom’s revised taxonomy.

User: I like your first three learning objectives! With these in
mind, please propose a lecture outline for a 50-minute class.

Bing Copilot: Sure, here’s a proposed lecture outline for a 50-
minute class on red-black trees:

(1) Introduction (5 minutes): Start the class with a brief recap of
binary search trees and their limitations that were discussed
in the last class. Introduce the concept of red-black trees as
a solution to these problems.

(2) Understanding Red-Black Trees (10 minutes): Explain the
properties of red-black trees and how they ensure balance
in the tree. Discuss the color property of nodes and why it
is essential.

(3) Break (5 minutes): A short break for students to digest the
information.

(4) Analyzing Red-Black Trees (10 minutes): Use diagrams and
examples to analyze the structure of red-black trees. Discuss
the significance of black depth.

(5) Applying Operations on Red-Black Trees (15 minutes):

e Insertion (7 minutes): Explain and demonstrate how to
insert a node into a red-black tree. Discuss how the tree
maintains its properties after insertion.

e Deletion (8 minutes): Explain and demonstrate how to
delete a node from a red-black tree. Discuss how the tree
maintains its properties after deletion.

(6) Summary and Q&A (5 minutes): Summarize the key points
of the lecture and open the floor for questions.

This outline ensures that the class is interactive and gives students
the opportunity to understand, analyze, and apply their knowledge
of red-black trees. It also includes a break to help maintain the
students’ concentration and engagement levels. The Q&A session at
the end allows for clarification of doubts and deeper understanding.

User: I do not think we need to give the students a break (they
are used to dense lectures). Could you please rewrite the outline?

Bing Copilot: Sure, here’s a revised lecture outline for a 50-
minute class on red-black trees:

(1) Introduction (5 minutes): Start the class with a brief recap of
binary search trees and their limitations that were discussed
in the last class. Introduce the concept of red-black trees as
a solution to these problems.

(2) Understanding Red-Black Trees (10 minutes): Explain the
properties of red-black trees and how they ensure balance
in the tree. Discuss the color property of nodes and why it
is essential.

(3) Analyzing Red-Black Trees (10 minutes): Use diagrams and
examples to analyze the structure of red-black trees. Discuss
the significance of black depth.

(4) Applying Operations on Red-Black Trees (15 minutes):

o Insertion (7 minutes): Explain and demonstrate how to
insert a node into a red-black tree. Discuss how the tree
maintains its properties after insertion.

o Deletion (8 minutes): Explain and demonstrate how to
delete a node from a red-black tree. Discuss how the tree
maintains its properties after deletion.

(5) Summary and Q&A (10 minutes): Summarize the key points
of the lecture and open the floor for questions.

This outline ensures that the class is interactive and gives students
the opportunity to understand, analyze, and apply their knowl-
edge of red-black trees. The Q&A session at the end allows for
clarification of doubts and deeper understanding.

User: This looks good. Let’s work on the specific pieces of the
lecture. For the Introduction item, please give me a two-paragraph
recap on binary search trees.

Bing Copilot: Sure, here’s a two-paragraph recap on binary
search trees:

A binary search tree (BST) is a node-based binary tree data
structure that has the following properties: The left subtree of a
node contains only nodes with keys lesser than the node’s key.
The right subtree of a node contains only nodes with keys greater
than the node’s key. The left and right subtree each must also be a
binary search tree?. Binary search trees are used to store data in a
way that allows for efficient searching, insertion, and deletion of
elements. They are commonly used in computer science and are
the foundation for many other data structures.

Binary search trees are useful because they allow for fast search-
ing of elements. The search operation in a binary search tree is
performed by comparing the search key with the key of the root
node. If the search key is less than the key of the root node, the

search continues in the left subtree. If the search key is greater than

the key of the root node, the search continues in the right subtree.

This process is repeated until the search key is found or the tree is

exhausted?. Binary search trees are also used to implement other

data structures such as sets, multisets, and associative arrays.
Source(s)

(1) Binary search tree - Wikipedia

(2) Binary Search Tree - GeeksforGeeks

(3) A Quick Guide to Binary Search Trees - Baeldung
(4) Binary Search Trees - Princeton University
(
(
(
(

6) Binary Search Tree - Programiz
7) Binary Trees - Stanford University
8) en.wikipedia.org

)
)
)
5) Introduction to Binary Search Tree - GeeksforGeeks
)
)

User: Let’s keep working on the introduction part of the lecture.
Please give me an Introduction to red-black trees and their role in
self-balancing data structures.

Bing Copilot: Red-black trees are a type of self-balancing binary
search tree that use a specific set of rules to ensure that the tree is
always balanced. This balance guarantees that the time complexity
for operations such as insertion, deletion, and searching is always
O(log n), regardless of the initial shape of the tree!.

Red-black trees are similar to binary search trees, but with an
additional color property for each node. Each node in a red-black
tree is either red or black. The color of a node is used to ensure
that the tree remains balanced. The rules for coloring nodes are as
follows:

The root node must be black.

Every leaf node (NULL node) must be black.

If a node is red, its children must be black.

Every path from a node to its descendant leaf nodes must
contain the same number of black nodes.

These rules ensure that the longest path from the root to a leaf
node is no more than twice as long as the shortest path!. This
balance guarantees that the time complexity for operations such
as insertion, deletion, and searching is always O(log n), regardless
of the initial shape of the tree!. Red-black trees are used in many
applications, including memory allocation algorithms, compilers,
and databases?.
Source(s)

(1) Introduction to Red-Black Tree - GeeksforGeeks

(2) Red-black tree - Wikipedia

(3) Red-black tree - Wikipedia
o Author note: this is copied verbatim, including the urls.

(4) Red-Black Trees - Department of Computer Science and
Electrical Engineering

(5) Applications of Red-Black Trees | Baeldung on Computer
Science

User: Thanks. To guarantee the formality of the definitions,
please give me the mathematical proof for the claim that, by main-
taining the black height of the tree, its respective height is O(log(n)).
Remember we are in a lecture with a time limit.

Bing Copilot: The height of a red-black tree is guaranteed to
be O(logn) by maintaining the black height of the tree. The black
height of a node is defined as the number of black nodes on any

https://en.wikipedia.org/wiki/Binary_search_tree
https://www.geeksforgeeks.org/binary-search-tree-data-structure/
https://www.baeldung.com/cs/binary-search-trees
https://algs4.cs.princeton.edu/32bst/
https://www.geeksforgeeks.org/introduction-to-binary-search-tree-data-structure-and-algorithm-tutorials/
https://www.programiz.com/dsa/binary-search-tree
http://cslibrary.stanford.edu/110/BinaryTrees.html
https://en.wikipedia.org/wiki/Binary_search_tree
https://www.geeksforgeeks.org/introduction-to-red-black-tree/
https://bing.com/search?q=red-black+trees+introduction
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://redirect.cs.umbc.edu/courses/undergraduate/341/fall13/section3/lectures/10-Red-Black-Trees.pdf
https://redirect.cs.umbc.edu/courses/undergraduate/341/fall13/section3/lectures/10-Red-Black-Trees.pdf

simple path from that node to a leaf node. The black height of all
leaf nodes is zero. The black height of a red-black tree is the black
height of its root node.

To prove that the height of a red-black tree is O(logn), we need
to show that the maximum height of the tree is proportional to the
logarithm of the number of nodes in the tree. We can do this by
showing that the number of nodes in a red-black tree of height h is
at most 22+ — 1.

We will prove this by induction. For the base case, consider a
red-black tree of height 0. This tree has only one node, which is the
root node. Therefore, the number of nodes in the tree is 1, which is
equal to 22*0+1 — 1,

Now assume that the claim is true for all red-black trees of height
less than h. Consider a red-black tree of height h. By the definition
of a red-black tree, the root node must be black. Therefore, the two
children of the root node must be red or black. If they are both
black, then the black height of the tree is h-1, and the number of
nodes in the left and right subtrees is at most 22(h=1)+1 _4 by the
induction hypothesis. Therefore, the total number of nodes in the
tree is at most 22(A=1+1 _ 1 4 1 4 22(h=1)+1 _q — 2h+1 _ 4

If the two children of the root node are both red, then the black
height of the tree is h, and the number of nodes in the left and
right subtrees is at most 22(h=1) _ by the induction hypothesis.
Therefore, the total number of nodes in the tree is at most 22(h=1) _
1+1+2207D g =92k

In either case, the number of nodes in the tree is at most
Therefore, the height of the tree is at most log(22h+1 —1) = O(logn).

This completes the proof that the height of a red-black tree is
O(logn) by maintaining the black height of the tree.

Source(s)

22h+1 —1.

(1) Red-Black Trees : Properties, Black Height and Proof of its
height

(2) CS367-3 - Red-Black Trees - University of Wisconsin—-Madison

(3) Red-Black Trees - Department of Computer Science and
Engineering

(4) Red-Black Trees Lecture 25 - Stony Brook University

User: Could you give me a direct proof instead of a proof by
induction?

Bing Copilot: Certainly! Here’s a direct proof that the height
of a red-black tree is O(logn) by maintaining the black height of
the tree:

The black height of a node is defined as the number of black
nodes on any simple path from that node to a leaf node. The black
height of all leaf nodes is zero. The black height of a red-black tree
is the black height of its root node.

Let h be the black height of a red-black tree with n nodes. Since
every path from the root to a leaf node contains at least h black
nodes, the height of the tree is at most 2h. Therefore, the number
of nodes in a red-black tree of height h is at most 22h+1 _ g

Since the height of a red-black tree is O(logn), we can conclude
that the number of nodes in a red-black tree of height h is at most
2241 _ 1 = O(n).

This completes the direct proof that the height of a red-black
tree is O(logn) by maintaining the black height of the tree.

Source(s)

(1) Red-Black Trees : Properties, Black Height and Proof of its
height

(2) 7.2 Red Black Trees Red Black Trees: Example - TUM

(3) CS367-3 - Red-Black Trees - University of Wisconsin-Madison

(4) Red-Back Trees - George Mason University

User: Isn’t that proof a type of logical fallacy? You are using the
claim as part of the proof.

Bing Copilot: You are correct. The proof I provided earlier is
circular reasoning, which is a type of logical fallacy. I apologize for
the mistake.

Here’s a revised proof that does not use the claim as part of the
proof:

The black height of a node is defined as the number of black
nodes on any simple path from that node to a leaf node. The black
height of all leaf nodes is zero. The black height of a red-black tree
is the black height of its root node.

Let h be the black height of a red-black tree with n nodes. Since
every path from the root to a leaf node contains at least h black
nodes, the height of the tree is at most 2h. Therefore, the number
of nodes in a red-black tree of height h is at most 22h+1 _ g

We can prove by induction that the minimum number of nodes
in a red-black tree of height h is 281 — 1. For the base case, consider
a red-black tree of height 0. This tree has only one node, which is
the root node. Therefore, the minimum number of nodes in the tree
is 1, which is equal to 201 — 1.

Now assume that the claim is true for all red-black trees of height
less than h. Consider a red-black tree of height h. By the definition
of a red-black tree, the root node must be black. Therefore, the two
children of the root node must be red or black. If they are both black,
then the black height of the tree is h-1, and the minimum number
of nodes in the left and right subtrees is 2 — 1 by the induction
hypothesis. Therefore, the minimum number of nodes in the tree is
2h —14142h —1=2M1

If the two children of the root node are both red, then the black
height of the tree is h, and the minimum number of nodes in the left
and right subtrees is 27 ~1—1 by the induction hypothesis. Therefore,
the minimum number of nodes in the tree is 27~ 1—1+1+2P~1 141 =
oh+l _ 1

In either case, the minimum number of nodes in the tree is
2h*1_ 1 Therefore, the height of the tree is at most log(22h*1 1) =
O(logn).

This completes the proof that the height of a red-black tree is
O(logn) by maintaining the black height of the tree.

Source(s)

(1) Red-Black Trees : Properties, Black Height and Proof of its
height

(2) 7.2 Red Black Trees Red Black Trees: Example - TUM

(3) CS367-3 - Red-Black Trees - University of Wisconsin—-Madison

(4) Red-Back Trees - George Mason University

User: Let’s work on the part of the lecture dedicated to the insert
and delete operations. For the insert operation, please give me its
main motivation and pseudocode.

Bing Copilot: The main motivation behind using red-black trees
is to ensure that the tree is always balanced, which guarantees that
the time complexity for operations such as insertion, deletion, and
searching is always O(log n), regardless of the initial shape of the

https://www.codesdope.com/course/data-structures-red-black-trees/
https://www.codesdope.com/course/data-structures-red-black-trees/
https://pages.cs.wisc.edu/~siff/CS367/Notes/rbts.html
https://web.cse.ohio-state.edu/~lai.1/6331/0.Red-Black Trees.pdf
https://web.cse.ohio-state.edu/~lai.1/6331/0.Red-Black Trees.pdf
https://www3.cs.stonybrook.edu/~skiena/214/lectures/lect25/lect25.html
https://www.codesdope.com/course/data-structures-red-black-trees/
https://www.codesdope.com/course/data-structures-red-black-trees/
https://www14.in.tum.de/lehre/2014WS/ea/split/sub-Red-Black-Trees-handout.pdf
https://pages.cs.wisc.edu/~siff/CS367/Notes/rbts.html
https://cs.gmu.edu/~rcarver/cs310/RedBlack.pdf
https://www.codesdope.com/course/data-structures-red-black-trees/
https://www.codesdope.com/course/data-structures-red-black-trees/
https://www14.in.tum.de/lehre/2014WS/ea/split/sub-Red-Black-Trees-handout.pdf
https://pages.cs.wisc.edu/~siff/CS367/Notes/rbts.html
https://cs.gmu.edu/~rcarver/cs310/RedBlack.pdf

tree. The color property of nodes in a red-black tree is used to
ensure that the tree remains balanced.
Here’s the pseudocode for inserting a new node into a red-black
tree:
RB-Insert(T, z)
y = nil
X = root[T]
while x != nil
y = X
if key[z] < key[x]
x = left[x]
else
x = right[x]
plz]l =y
if y == nil
root[T] = z
else if key[z] < key[y]
leftly] = z
else
rightly] = z
left[z] = nil
right[z] = nil
color[z] = RED
RB-Insert-Fixup(T, z)
This algorithm inserts a new node z into the red-black tree T. The
new node is always inserted as a red node. After insertion of a new
node, if the tree is violating the properties of the red-black tree,
then we perform the following operations to maintain the balance
of the tree:
RB-Insert-Fixup(T, z)
while color[p[z]] == RED
if plz] == leftlplplz]]]
y = right[plplz]]]
if color[y] == RED
color[p[z]] = BLACK
color[y] = BLACK
color[plplz]]] = RED

z = plplz]]
else
if z == right[p[z]]
z = p[z]

LEFT-ROTATE(T, z)
color[plz]] = BLACK
color[plplz]]] = RED
RIGHT-ROTATE(T, plplzll)

else

(same as then clause with "right" and "left" exchanged)

color[root[T]] = BLACK

This algorithm is used to maintain the properties of the red-
black tree if insertion of a new node violates these properties. The
algorithm uses rotations and color changes to ensure that the tree
remains balanced.

Source(s)

(1) Insertion in a Red-Black Tree - Programiz

(2) Red Black Trees : Rotations and Insertions - CodesDope

(3) Class RedBlackTree - andrew.cmu.edu

20

(4) Data Structures and Algorithms: Red-Black Trees

User: Where did you get this pseudocode?

Bing Copilot: I apologize for the confusion earlier. The pseu-
docode I provided earlier was sourced from a website without
proper citation. I have since found a reliable source for the pseu-
docode.

Here’s the pseudocode for inserting a new node into a red-black
tree, sourced from!:

RB-Insert(T, z)
y = nil
X = root[T]
while x != nil
y = X
if key[z] < key[x]
x = left[x]
else
x = right[x]
plz]l =y
if y == nil
root[T] = z
else if key[z] < key[yl]
leftly] = z
else
rightly] = z
left[z] = nil
right[z] nil
color[z] = RED
RB-Insert-Fixup(T, z)
This algorithm inserts a new node z into the red-black tree T. The
new node is always inserted as a red node. After insertion of a new
node, if the tree is violating the properties of the red-black tree,
then we perform the following operations to maintain the balance
of the tree:
RB-Insert-Fixup(T, z)
while color[p[z]] == RED
if pl[z] == leftlplpl[z]1]1]
y = rightlp[plz]]]
if color[y] == RED
color[p[z]] = BLACK
color[y] = BLACK
color[p[plz]]] = RED

z = plplz]]
else
if z == right[p[z]]
z = p[z]

LEFT-ROTATE(T, z)
color[p[z]] = BLACK
color[plplz]]l] = RED
RIGHT-ROTATE(T, plplzl1l)

else

(same as then clause with "right" and "left" exchanged)

color[root[T]] = BLACK

This algorithm is used to maintain the properties of the red-black
tree if insertion of a new node violates these properties. The al-
gorithm uses rotations and color changes to ensure that the tree
remains balanced.

https://www.programiz.com/dsa/insertion-in-a-red-black-tree
https://www.codesdope.com/course/data-structures-red-black-trees-insertion/
https://www.andrew.cmu.edu/user/mm6/95-771/examples/RedBlackTreeProject/dist/javadoc/redblacktreeproject/RedBlackTree.html
https://www.eecs.umich.edu/courses/eecs380/ALG/red_black.html

Source(s)

(1) Insertion in a Red-Black Tree - Programiz

(2) Design and Analysis of Algorithms: Red-Black Trees - GitHub
Pages

(3) Insertion In Red-Black Trees - Coding Ninjas

(4) Red Black Tree: Insertion - OpenGenus IQ

(5) Red Black Tree in C++ | Delft Stack

User: Please do the same for the delete operation.
Bing Copilot: Certainly! Here’s the pseudocode for deleting a
node from a red-black tree, sourced from?:

RB-Delete(T, z)
if left[z] == nil or right[z] == nil
y =2z
else
y = Tree-Successor(z)
if leftly] != nil
x = leftly]
else
x = right[y]
plx] = plyl
if ply] == nil
root[T] = x
else if y == left[p[y]]
leftlplyl] = x
else
right[plyl] = x
ifyl=z
key[z] = keyLy]
(copy y's satellite data into z)
if color[y] == BLACK
RB-Delete-Fixup(T, x)
return y

This algorithm deletes a node z from the red-black tree T. If the
node to be deleted has no children, it is simply removed and the
parent node is updated. If the node to be deleted has only one
child, it is replaced with its child. If the node to be deleted has two
children, then it is replaced with its in-order successor, which is the
leftmost node in the right subtree. Then the in-order successor node
is deleted as if it has at most one child. After the node is deleted, the
red-black properties might be violated. To restore these properties,
some color changes and rotations are performed on the nodes in the
tree. The changes are similar to those performed during insertion,
but with different conditions. The deletion operation in a red-black
tree takes O(log n) time on average, making it a good choice for
searching and deleting elements in large data sets'.
Source(s)

(1) Deletion in Red-Black Tree - GeeksforGeeks

(2) Red Black Tree: Deletion - OpenGenus IQ

(3) Red-Black Trees (MIT/GNU Scheme 12.1)

(4) Red Black Tree: Deletion - OpenGenus IQ

(5) Understand Red Black Tree with Pseudo-codes | by snowme34
- Medium

User: This is good. Please remind me of the class outline again.
Bing Copilot: Sure, here’s the revised lecture outline for a 50-
minute class on red-black trees:

(1) Introduction (5 minutes): Start the class with a brief recap of
binary search trees and their limitations that were discussed
in the last class. Introduce the concept of red-black trees as
a solution to these problems.

(2) Understanding Red-Black Trees (10 minutes): Explain the
properties of red-black trees and how they ensure balance
in the tree. Discuss the color property of nodes and why it
is essential.

(3) Analyzing Red-Black Trees (10 minutes): Use diagrams and
examples to analyze the structure of red-black trees. Discuss
the significance of black depth.

(4) Applying Operations on Red-Black Trees (15 minutes):

(a) Insertion (7 minutes): Explain and demonstrate how to
insert a node into a red-black tree. Discuss how the tree
maintains its properties after insertion.

(b) Deletion (8 minutes): Explain and demonstrate how to
delete a node from a red-black tree. Discuss how the tree
maintains its properties after deletion.

(5) Summary and Q&A (10 minutes): Summarize the key points
of the lecture and open the floor for questions.

This outline ensures that the class is interactive and gives students
the opportunity to understand, analyze, and apply their knowl-
edge of red-black trees. The Q&A session at the end allows for
clarification of doubts and deeper understanding.

User: Awesome. Let’s wrap it up and give me the summary of
the lecture.

Bing Copilot: Sure! Here’s a summary of the lecture:

e Red-black trees are a type of self-balancing binary search
tree that use a specific set of rules to ensure that the tree
is always balanced. This balance guarantees that the time
complexity for operations such as insertion, deletion, and
searching is always O(logn), regardless of the initial shape
of the tree.

e The color property of nodes in a red-black tree is used to
ensure that the tree remains balanced. Each node in a red-
black tree is either red or black. The color of a node is used to
ensure that the tree remains balanced. The rules for coloring
nodes are as follows:

— The root node must be black.

— Every leaf node (NULL node) must be black.

— If anode is red, its children must be black.

— Every path from a node to its descendant leaf nodes must
contain the same number of black nodes.

o Insertion and deletion operations on red-black trees are sim-
ilar to those performed on binary search trees, but with
additional color changes and rotations to ensure that the
tree remains balanced.

e The deletion operation in a red-black tree takes O(logn)
time on average, making it a good choice for searching and
deleting elements in large data sets.

I hope this summary helps!

User: Please compile the learning objectives, outline, and content
into a single large lecture document.

Bing Copilot: Sure! Here’s a compiled lecture document on
red-black trees:

Red-Black Trees

https://www.programiz.com/dsa/insertion-in-a-red-black-tree
https://gcallah.github.io/algorithms/RedBlackTrees.html
https://gcallah.github.io/algorithms/RedBlackTrees.html
https://www.codingninjas.com/studio/library/insertion-in-red-black-trees
https://iq.opengenus.org/red-black-tree-insertion/
https://www.delftstack.com/howto/cpp/red-black-tree-cpp/
https://www.geeksforgeeks.org/deletion-in-red-black-tree/
https://bing.com/search?q=red-black+trees+delete+operation+motivation+and+pseudocode
https://www.gnu.org/software/mit-scheme/documentation/stable/mit-scheme-ref/Red_002dBlack-Trees.html
https://iq.opengenus.org/red-black-tree-deletion/
https://medium.com/@snowme34/understand-red-black-tree-with-pseudo-codes-34aa31542e25
https://medium.com/@snowme34/understand-red-black-tree-with-pseudo-codes-34aa31542e25

Learning Objectives
By the end of this lecture, students should be able to:

(1) Understand the concept of red-black trees: Students should
be able to explain what red-black trees are, their properties,
and why they are used in computer science.

(2) Analyze the structure of red-black trees: Students should be
able to dissect a given red-black tree, identify its components,
and explain the role of each component.

(3) Apply the operations of red-black trees: Students should be
able to perform basic operations on red-black trees such as
insertion, deletion, and searching.

(4) Evaluate the performance of red-black trees: Students should
be able to assess the time complexity of operations on red-
black trees and compare it with other data structures.

(5) Create red-black trees: Given a set of data, students should
be able to construct a red-black tree.

Lecture Outline

(1) Introduction (5 minutes): Start the class with a brief recap of
binary search trees and their limitations that were discussed
in the last class. Introduce the concept of red-black trees as
a solution to these problems.

(2) Understanding Red-Black Trees (10 minutes): Explain the
properties of red-black trees and how they ensure balance
in the tree. Discuss the color property of nodes and why it
is essential.

(3) Analyzing Red-Black Trees (10 minutes): Use diagrams and
examples to analyze the structure of red-black trees. Discuss
the significance of black depth.

(4) Applying Operations on Red-Black Trees (15 minutes):

o Insertion (7 minutes): Explain and demonstrate how to
insert a node into a red-black tree. Discuss how the tree
maintains its properties after insertion.

o Deletion (8 minutes): Explain and demonstrate how to
delete a node from a red-black tree. Discuss how the tree
maintains its properties after deletion.

(5) Summary and Q&A (10 minutes): Summarize the key points
of the lecture and open the floor for questions.

Lecture Content

Introduction A binary search tree (BST) is a node-based binary
tree data structure that has the following properties: The left subtree
of a node contains only nodes with keys lesser than the node’s key.
The right subtree of a node contains only nodes with keys greater
than the node’s key. The left and right subtree each must also be a
binary search tree . Binary search trees are used to store data in a
way that allows for efficient searching, insertion, and deletion of
elements. They are commonly used in computer science and are
the foundation for many other data structures.

However, binary search trees have some limitations. If the tree is
not balanced, the time complexity for operations such as insertion,
deletion, and searching can be O(n), where n is the number of nodes
in the tree. This can be a problem when dealing with large data
sets. To overcome this limitation, we use red-black trees.

Red-black trees are a type of self-balancing binary search tree
that use a specific set of rules to ensure that the tree is always
balanced. This balance guarantees that the time complexity for

22

operations such as insertion, deletion, and searching is always
O(logn), regardless of the initial shape of the tree.

Understanding Red-Black Trees

Red-black trees are similar to binary search trees, but with an
additional color property for each node. Each node in a red-black
tree is either red or black. The color of a node is used to ensure
that the tree remains balanced. The rules for coloring nodes are as
follows:

The root node must be black.

Every leaf node (NULL node) must be black.

If a node is red, its children must be black.

Every path from a node to its descendant leaf nodes must
contain the same number of black nodes.

These rules ensure that the longest path from the root to a leaf
node is no more than twice as long as the shortest path . This
balance guarantees that the time complexity for operations such
as insertion, deletion, and searching is always O(logn), regardless
of the initial shape of the tree . Red-black trees are used in many
applications, including memory allocation algorithms, compilers,
and databases .

Analyzing Red-Black Trees The structure of a red-black tree
can be analyzed using diagrams and examples. The black depth of
a node is defined as the number of black nodes on any simple path
from that node to a leaf node. The black depth of all leaf nodes is
zero. The black depth of a red-black tree is the black depth of its
root node.

The significance of black depth is that it ensures that the longest
path from the root to a leaf node is no more than twice as long as
the shortest path . This balance guarantees that the time complexity
for

Author note: it cut off the response here for some unknown reason.

User: Please finish

Bing Copilot: I apologize for the incomplete response earlier.
Here’s the rest of the lecture content:

Applying Operations on Red-Black Trees

Insertion and deletion operations on red-black trees are similar
to those performed on binary search trees, but with additional color
changes and rotations to ensure that the tree remains balanced.

Here’s the pseudocode for inserting a new node into a red-black
tree:

RB-Insert(T, z)
y = nil
X = root[T]
while x != nil
y = X
if key[z] < key[x]
x = left[x]
else
X =
plz] =y
if y == nil
root[T] = z
else if key[z] < key[y]
leftly] = z
else
rightly] = z

right[x]

left[z] = nil
right[z] nil
color[z] = RED
RB-Insert-Fixup(T, z)

This algorithm inserts a new node z into the red-black tree T. The
new node is always inserted as a red node. After insertion of a new
node, if the tree is violating the properties of the red-black tree,
then we perform the following operations to maintain the balance
of the tree:

RB-Insert-Fixup(T, z)
while color[p[z]] == RED
if plz] == leftlplplz]]]
y = right[plplz]]]
if color[y] == RED
color[p[z]] = BLACK
color[y] = BLACK
color[plplz]]] = RED

z = plplz]]
else
if z == right[p[z]]
z = p[z]

LEFT-ROTATE(T, z)
color[pl[z]] = BLACK
color[plplz]]] = RED
RIGHT-ROTATE(T, plplzll)

else

(same as then clause with "right" and "left" exchanged)

color[root[T]] = BLACK

This algorithm is used to maintain the properties of the red-black
tree if insertion of a new node violates these properties. The al-
gorithm uses rotations and color changes to ensure that the tree
remains balanced.

Here’s the pseudocode for deleting a node from a red-black tree:

RB-Delete(T, z)
if left[z] nil or right[z]
y =2z
else
y = Tree-Successor(z)
if leftly] != nil
x = leftly]
else
x = right[y]
p[x] = ply]
if ply] nil
root[T] = x
else if y == left[p[y]]
leftlplyl] = x
else
right[plyl] = x
ifyl=z
key[z] = key[y]
(copy y's satellite data into z)
if color[y] == BLACK
RB-Delete-Fixup(T, x)
return y

nil

23

This algorithm deletes a node z from the red-black tree T. If the
node to be deleted has no children, it is simply removed and the
parent node is updated. If the node to be deleted has only one
child, it is replaced with its child. If the node to be deleted has two
children, then it is replaced with its in-order successor, which is the
leftmost node in the right subtree. Then the in-order successor node
is deleted as if it has at most one child. After the node is deleted, the
red-black properties might be violated. To restore these properties,
some color changes and rotations are performed on the nodes in the
tree. The changes are similar to those performed during insertion,
but with different conditions. The deletion operation in a red-black
tree takes O(logn) time on average, making it a good choice for
searching and deleting elements in large data sets.
Summary

e Red-black trees are a type of self-balancing binary search
tree that use a specific set of rules to ensure that the tree
is always balanced. This balance guarantees that the time
complexity for operations such as insertion, deletion, and
searching is always O(logn), regardless of the initial shape
of the tree.

e The color property of nodes in a red-black tree is used to
ensure that the tree remains balanced. Each node in a red-
black tree is either red or black. The color of a node is used to
ensure that the tree remains balanced. The rules for coloring
nodes are as follows:

— The root node must be black.

— Every leaf node (NULL node) must be black.

— If a node is red, its children must be black.

— Every path from a node to its descendant leaf nodes must
contain the same number of black nodes.

o Insertion and deletion operations on red-black trees are sim-
ilar to those performed on binary search trees, but with
additional color changes and rotations to ensure

	Abstract
	Contents
	1 Introduction
	2 Why Should Educators Consider GenAI for Course Content Creation?
	3 GAIDE: A GenAI Content Generation Framework
	3.1 Setup
	3.2 Course Content Rough Draft
	3.3 Macro Refinement
	3.4 Micro Refinement
	3.5 Maintaining Contextual Integrity in Iterative Refinement
	3.6 Consolidating Generated Content

	4 General Considerations for Engaging with GenAI
	4.1 Diversity of Perspectives

	5 Discussion and Future Work
	Acknowledgments
	References
	6 ChatGPT 4.0
	7 Bing Copilot

